Fol. Biol. 2014, 60, 108-112

https://doi.org/10.14712/fb2014060030108

An Association between MPO-463 G/A Polymorphism and Type 2 Diabetes

Arzu Ergen1, H. Karagedik1, Z. E. Karaali2, T. Isbir3

1Istanbul University, The Institute of Experimental Medicine, Department of Molecular Medicine, Capa-Istanbul, Turkey
2Department of Internal Medicine, Haseki Training and Research Hospital, Istanbul, Turkey
3Department of Medical Biology, Yeditepe University, Faculty of Medicine, Istanbul, Turkey

Received July 2013
Accepted February 2014

References

1. American Diabetes Association (2013) Diagnosis and classification of diabetes mellitus. Diabetes Care 36, 67-74. <https://doi.org/10.2337/dc13-S067>
2. Baynes, J. W. (1991) Role of oxidative stress in development of complications in diabetes. Diabetes 40, 405-412. <https://doi.org/10.2337/diab.40.4.405>
3. Betteridge, D. J. (2000) What is oxidative stress. Metabolism 49, 3-8. <https://doi.org/10.1016/S0026-0495(00)80077-3>
4. Brownlee, M. (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414, 813-820. <https://doi.org/10.1038/414813a>
5. Cooke, M. S., Evans, M. D., Dizdaroglu, M., Lunec, J. (2003) Oxidative DNA damage: mechanisms, mutation and disease. FASEB J. 17, 1195-1214. <https://doi.org/10.1096/fj.02-0752rev>
6. Gorudko, I. V., Kostevich, A. V., Sokolov, A. V., Konstatinova, E. É., Tsapaeva, N. L., Mironova, E. V., Zakharova, E. T., Vasil’ev, V. B., Cherenkevich, S. N., Panasenko, A. M. (2012) Increased myeloperoxidase activity is a risk factor for ischemic heart disease in patients with diabetes mellitus. Biomed. Khim. 58, 475-484. <https://doi.org/10.18097/pbmc20125804475>
7. Kaneto, H., Katakami, N., Matsuhisa, M., Matsuoka, T. A. (2009) Role of reactive oxygen species in the progression of type 2 diabetes and atherosclerosis. Mediators Inflamm. 2010, 2010.
8. Kantarci, O. H., Lesnick, T. G., Yang, P., Meyer, R. L., Hebrink, D. D., McMurray, C. T., Weinshenker, B G. (2002) Myeloperoxidase -463 (G→A) polymorphism associated with lower risk of lung cancer. Mayo Clin. Proc. 77, 17-22. <https://doi.org/10.4065/77.1.17>
9. Katakami, N., Kume, S., Kaneto, H., Uzu, T., Kashiwagi, A., Yamasaki, Y., Maegawa, H., Shimomura, I. (2013) Association of myeloperoxidase G-463A gene polymorphism with diabetic nephropathy in Japanese type 2 diabetic subjects. Endocr. J. 60, 457-471. <https://doi.org/10.1507/endocrj.EJ12-0345>
10. Klebanoff, S. J., Waltersdorph, A. M., Rosen, H. (1984) Antimicrobial activity of myeloperoxidase. Methods Enzymol. 105, 399-403. <https://doi.org/10.1016/S0076-6879(84)05055-2>
11. Mäkelä, R., Loimaala, A., Nenonen, A., Mercuri, M., Vuori, I., Huhtala, H., Oja, P., Bond, G., Koivula, T., Lehtimäki, T. (2008) The association of myeloperoxidase promoter polymorphism with carotid atherosclerosis is abolished in patients with type 2 diabetes. Clin. Biochem. 41, 532-537. <https://doi.org/10.1016/j.clinbiochem.2008.01.017>
12. Miller, S. A., Dykes, D. D., Polesky, H. F. (1988) Simple salting-out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 16, 1215. <https://doi.org/10.1093/nar/16.3.1215>
13. Nikpoor, B., Turecki, G., Fournier, C., Théroux, P., Rouleau, G.A. (2001) A functional myeloperoxidase polymorphic variant is associated with coronary artery disease in FrenchCanadians. Am. Heart J. 142, 336-339. <https://doi.org/10.1067/mhj.2001.116769>
14. Rovira-Llopis, S., Rocha, M., Falcon, R., de Pablo, C., Alvarez, A., Jover, A., Hernandez-Mijares, A., Victor, V. M. (2013) Is myeloperoxidase a key component in the ROS-induced vascular damage related to nephropathy in type 2 diabetes? Antioxid. Redox Signal. 19, 1452-1458. <https://doi.org/10.1089/ars.2013.5307>
15. Spickett, C. M., Jerlich, A., Panasenko, O. M., Arnhold, J., Pitt, A. R., Stelmaszyńska, T., Schaur, R. J. (2000) The reactions of hypochlorous acid, the reactive oxygen species produced by myeloperoxidase, with lipids. Acta Biochim. Pol. 47, 889-899. <https://doi.org/10.18388/abp.2000_3944>
16. Sundaram, R. K., Bhaskar, A., Vijayalingam, S., Viswanathan, M., Mohan, R., Shanmugasundaram, K. R. (1996) Antioxidant status and lipid peroxidation in type II diabetes mellitus with and without complications. Clin. Sci. 90, 255-260. <https://doi.org/10.1042/cs0900255>
17. Wiersma, J. J., Meuwese, M. C., van Miert, J. N., Kastelein, A., Tijssen, J. G., Piek, J. J., Trip, MD. (2008) Diabetes mellitus type 2 is associated with higher levels of myeloperoxidase. Med. Sci. Monit. 4, 406-410.
18. Zaltzberg, H., Kanter, Y., Aviram, M., Levy, Y. (1999) Increased plasma oxidizability and decreased erythrocyte and plasma antioxidative capacity in patients with NIDDM. Isr. Med. Assoc. J. 1, 228–231.
19. Zhang, C., Yang, J., Jennings, L. K. (2004) Leukocyte-derived myeloperoxidase amplifies high-glucose-induced endothelial dysfunction through interaction with high-glucose-stimulated, vascular non-leukocyte-derived reactive oxygen species. Diabetes 53, 2950-2959. <https://doi.org/10.2337/diabetes.53.11.2950>
20. Zhang, R., Shen, Z., Nauseef, W. M., Hazen, S. L. (2002a) Defects in leukocyte-mediated initiation of lipid peroxidation in plasma as studied in myeloperoxidase-deficient subjects: systematic identification of multiple endogenous diffusible substrates for myeloperoxidase in plasma. Blood 99, 1802-1810. <https://doi.org/10.1182/blood.V99.5.1802.h8001802_1802_1810>
21. Zhang, R., Brennan, M. L., Shen, Z., MacPherson, J. C., Schmitt, D., Molenda, C. E., Hazen, S. L. (2002b) Myeloperoxidase functions as a major enzymatic catalyst for initiation of lipid peroxidation at sites of inflammation. J. Biol. Chem. 277, 46116–46122. <https://doi.org/10.1074/jbc.M209124200>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Submissions

Archive