Fol. Biol. 2014, 60, 108-112
https://doi.org/10.14712/fb2014060030108
An Association between MPO-463 G/A Polymorphism and Type 2 Diabetes
References
1. (2013) Diagnosis and classification of diabetes mellitus. Diabetes Care 36, 67-74.
<https://doi.org/10.2337/dc13-S067>
2. , J. W. (1991) Role of oxidative stress in development of complications in diabetes. Diabetes 40, 405-412.
<https://doi.org/10.2337/diab.40.4.405>
3. , D. J. (2000) What is oxidative stress. Metabolism 49, 3-8.
<https://doi.org/10.1016/S0026-0495(00)80077-3>
4. , M. (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414, 813-820.
<https://doi.org/10.1038/414813a>
5. , M. S., Evans, M. D., Dizdaroglu, M., Lunec, J. (2003) Oxidative DNA damage: mechanisms, mutation and disease. FASEB J. 17, 1195-1214.
<https://doi.org/10.1096/fj.02-0752rev>
6. , I. V., Kostevich, A. V., Sokolov, A. V., Konstatinova, E. É., Tsapaeva, N. L., Mironova, E. V., Zakharova, E. T., Vasil’ev, V. B., Cherenkevich, S. N., Panasenko, A. M. (2012) Increased myeloperoxidase activity is a risk factor for ischemic heart disease in patients with diabetes mellitus. Biomed. Khim. 58, 475-484.
<https://doi.org/10.18097/pbmc20125804475>
7. , H., Katakami, N., Matsuhisa, M., Matsuoka, T. A. (2009) Role of reactive oxygen species in the progression of type 2 diabetes and atherosclerosis. Mediators Inflamm. 2010, 2010.
8. , O. H., Lesnick, T. G., Yang, P., Meyer, R. L., Hebrink, D. D., McMurray, C. T., Weinshenker, B G. (2002) Myeloperoxidase -463 (G→A) polymorphism associated with lower risk of lung cancer. Mayo Clin. Proc. 77, 17-22.
<https://doi.org/10.4065/77.1.17>
9. , N., Kume, S., Kaneto, H., Uzu, T., Kashiwagi, A., Yamasaki, Y., Maegawa, H., Shimomura, I. (2013) Association of myeloperoxidase G-463A gene polymorphism with diabetic nephropathy in Japanese type 2 diabetic subjects. Endocr. J. 60, 457-471.
<https://doi.org/10.1507/endocrj.EJ12-0345>
10. , S. J., Waltersdorph, A. M., Rosen, H. (1984) Antimicrobial activity of myeloperoxidase. Methods Enzymol. 105, 399-403.
<https://doi.org/10.1016/S0076-6879(84)05055-2>
11. , R., Loimaala, A., Nenonen, A., Mercuri, M., Vuori, I., Huhtala, H., Oja, P., Bond, G., Koivula, T., Lehtimäki, T. (2008) The association of myeloperoxidase promoter polymorphism with carotid atherosclerosis is abolished in patients with type 2 diabetes. Clin. Biochem. 41, 532-537.
<https://doi.org/10.1016/j.clinbiochem.2008.01.017>
12. , S. A., Dykes, D. D., Polesky, H. F. (1988) Simple salting-out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 16, 1215.
<https://doi.org/10.1093/nar/16.3.1215>
13. , B., Turecki, G., Fournier, C., Théroux, P., Rouleau, G.A. (2001) A functional myeloperoxidase polymorphic variant is associated with coronary artery disease in FrenchCanadians. Am. Heart J. 142, 336-339.
<https://doi.org/10.1067/mhj.2001.116769>
14. , S., Rocha, M., Falcon, R., de Pablo, C., Alvarez, A., Jover, A., Hernandez-Mijares, A., Victor, V. M. (2013) Is myeloperoxidase a key component in the ROS-induced vascular damage related to nephropathy in type 2 diabetes? Antioxid. Redox Signal. 19, 1452-1458.
<https://doi.org/10.1089/ars.2013.5307>
15. , C. M., Jerlich, A., Panasenko, O. M., Arnhold, J., Pitt, A. R., Stelmaszyńska, T., Schaur, R. J. (2000) The reactions of hypochlorous acid, the reactive oxygen species produced by myeloperoxidase, with lipids. Acta Biochim. Pol. 47, 889-899.
<https://doi.org/10.18388/abp.2000_3944>
16. , R. K., Bhaskar, A., Vijayalingam, S., Viswanathan, M., Mohan, R., Shanmugasundaram, K. R. (1996) Antioxidant status and lipid peroxidation in type II diabetes mellitus with and without complications. Clin. Sci. 90, 255-260.
<https://doi.org/10.1042/cs0900255>
17. , J. J., Meuwese, M. C., van Miert, J. N., Kastelein, A., Tijssen, J. G., Piek, J. J., Trip, MD. (2008) Diabetes mellitus type 2 is associated with higher levels of myeloperoxidase. Med. Sci. Monit. 4, 406-410.
18. , H., Kanter, Y., Aviram, M., Levy, Y. (1999) Increased plasma oxidizability and decreased erythrocyte and plasma antioxidative capacity in patients with NIDDM. Isr. Med. Assoc. J. 1, 228–231.
19. , C., Yang, J., Jennings, L. K. (2004) Leukocyte-derived myeloperoxidase amplifies high-glucose-induced endothelial dysfunction through interaction with high-glucose-stimulated, vascular non-leukocyte-derived reactive oxygen species. Diabetes 53, 2950-2959.
<https://doi.org/10.2337/diabetes.53.11.2950>
20. , R., Shen, Z., Nauseef, W. M., Hazen, S. L. (2002a) Defects in leukocyte-mediated initiation of lipid peroxidation in plasma as studied in myeloperoxidase-deficient subjects: systematic identification of multiple endogenous diffusible substrates for myeloperoxidase in plasma. Blood 99, 1802-1810.
<https://doi.org/10.1182/blood.V99.5.1802.h8001802_1802_1810>
21. , R., Brennan, M. L., Shen, Z., MacPherson, J. C., Schmitt, D., Molenda, C. E., Hazen, S. L. (2002b) Myeloperoxidase functions as a major enzymatic catalyst for initiation of lipid peroxidation at sites of inflammation. J. Biol. Chem. 277, 46116–46122.
<https://doi.org/10.1074/jbc.M209124200>
