Fol. Biol. 2014, 60, 168-179

https://doi.org/10.14712/fb2014060040168

Adipose Cells Induce Phospho-Thr-172 AMPK Production by Epinephrine or CL316243 in Mouse 3T3-L1 Adipocytes or MAPK Activation and G Protein-Associated PI3K Responses Induced by CL316243 or Aluminum Fluoride in Rat White Adipocytes

Yasuhito Ohsaka1,2,3, H. Nishino1,4, Y. Nomura3,5

1Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
2Department of Pharmacology, Faculty of Pharmaceutical Sciences, Chiba Institute of Science, Choshi, Japan
3Department of Pharmacology, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
4Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Kusatsu, Japan
5Yokohama College of Pharmacy, Yokohama, Japan

Received June 2013
Accepted March 2014

References

1. Arner, P., Hoffstedt, J. (1999) Adrenoceptor genes in human obesity. J. Intern. Med. 245, 667-672. <https://doi.org/10.1046/j.1365-2796.1999.00495.x>
2. Baldini, G., Hohman, R., Charron, M. J., Lodish, H. F. (1991) Insulin and nonhydrolyzable GTP analogs induce translocation of GLUT 4 to the plasma membrane in α-toxinpermeabilized rat adipose cells. J. Biol. Chem. 266, 4037-4040. <https://doi.org/10.1016/S0021-9258(20)64280-6>
3. Baragli, A., Ghé, C., Arnoletti, E., Granata, R., Ghigo, E., Muccioli, G. (2011) Acylated and unacylated ghrelin attenuate isoproterenol-induced lipolysis in isolated rat visceral adipocytes through activation of phosphoinositide 3-kinase γ and phosphodiesterase 3B. Biochim. Biophys. Acta 1811, 386-396. <https://doi.org/10.1016/j.bbalip.2011.03.001>
4. Bloom, J. D., Dutia, M. D., Johnson, B. D., Wissner, A., Burns, M. G., Largis, E. E., D olan, J. A., Claus, T. H. (1992) Disodium (R,R)-5-[2-[[2-(3-chlorophenyl)-2-hydroxyethyl]- amino]propyl]-1,3-benzodioxole-2,2-dicarboxylate (CL 316,243). A potent β-adrenergic agonist virtually specific for β3 receptors. A promising antidiabetic and antiobesity agent. J. Med. Chem. 35, 3081-3084. <https://doi.org/10.1021/jm00094a025>
5. Cao, W., Luttrell, L. M., Medvedev, A. V., Pierce, K. L., Daniel, K. W., D ixon, T. M., Lefkowitz, R. J., Collins, S. (2000) D irect binding of activated c-Src to the β3-adrenergic receptor is required for MAP kinase activation. J. Biol. Chem. 275, 38131-38134. <https://doi.org/10.1074/jbc.C000592200>
6. Chaudhry, A., MacKenzie, R. G., Georgic, L. M., Granneman, J. G. (1994) D ifferential interaction of β1- and β3-adrenergic receptors with Gi in rat adipocytes. Cell. Signal. 6, 457-465. <https://doi.org/10.1016/0898-6568(94)90093-0>
7. Chernick, S. S., Spooner, P. M., Garrison, M. M., Scow, R. O. (1986) Effect of epinephrine and other lipolytic agents on intracellular lipolysis and lipoprotein lipase activity in 3T3-L1 adipocytes. J. Lipid Res. 27, 286-294. <https://doi.org/10.1016/S0022-2275(20)38831-3>
8. Daval, M., Diot-Dupuy, F., Bazin, R., Hainault, I., Viollet, B., Vaulont, S., Hajduch, E., Ferré, P., Foufelle, F. (2005) Antilipolytic action of AMP-activated protein kinase in rodent adipocytes. J. Biol. Chem. 280, 25250-25257. <https://doi.org/10.1074/jbc.M414222200>
9. Diggle, T. A., Denton, R. M. (1992) Comparison of the effects of insulin and adrenergic agonists on the phosphorylation of an acid-soluble 22 kDa protein in rat epididymal fatpads and isolated fat-cells. Biochem. J. 282, 729-736. <https://doi.org/10.1042/bj2820729>
10. Elks, M. L., Manganiello, V. C., Vaughan, M. (1984) Effects of dexamethasone on adenosine 3’,5’-monophosphate content and phosphodiesterase activities in 3T3-L1 adipocytes. Endocrinology 115, 1350-1356. <https://doi.org/10.1210/endo-115-4-1350>
11. Gauthier, M.-S., Miyoshi, H., Souza, S. C., Cacicedo, J. M., Saha, A. K., Greenberg, A. S., Ruderman, N. B. (2008) AMP-activated protein kinase is activated as a consequence of lipolysis in the adipocyte. J. Biol. Chem. 283, 16514-16524. <https://doi.org/10.1074/jbc.M708177200>
12. Giorgetti, S., Ballotti, R., Kowalski-Chauvel, A., Cormont, M., Van Obberghen, E. (1992) Insulin stimulates phosphatidylinositol-3-kinase activity in rat adipocytes. Eur. J. Biochem. 207, 599-606. <https://doi.org/10.1111/j.1432-1033.1992.tb17086.x>
13. Gormand, A., Henriksson, E., Ström, K., Jensen, T. E., Sakamoto, K., Göransson, O. (2011) Regulation of AMPactivated protein kinase by LKB1 and CaMKK in adipocytes. J. Cell. Biochem. 112, 1364-1375. <https://doi.org/10.1002/jcb.23053>
14. Greenberg, A. S., Shen, W.-J., Muliro, K., Patel, S., Souza, S. C., Roth, R. A., Kraemer, F. B. (2001) Stimulation of lipolysis and hormone-sensitive lipase via the extracellular signal-regulated kinase pathway. J. Biol. Chem. 276, 45456-45461. <https://doi.org/10.1074/jbc.M104436200>
15. Grillo, S., Grémeaux, T., Le Marchand-Brustel, Y ., Tanti, J.-F. (1999) Potential role of 3-phosphoinositide-dependent protein kinase 1 (PDK1) in insulin-stimulated glucose transporter 4 translocation in adipocytes. FEBS Lett. 461, 277-279. <https://doi.org/10.1016/S0014-5793(99)01472-6>
16. Hawes, B. E., Luttrell, L. M., van Biesen, T., Lefkowitz, R. J. (1996) Phosphatidylinositol 3-kinase is an early intermediate in the Gβγ-mediated mitogen-activated protein kinase signaling pathway. J. Biol. Chem. 271, 12133-12136. <https://doi.org/10.1074/jbc.271.21.12133>
17. Haystead, T. A. J., Haystead, C. M. M., Hu, C., Lin, T.-A., Lawrence, Jr J. C. (1994) Phosphorylation of PHAS-I by mitogen-activated protein (MAP) kinase. J. Biol. Chem. 269, 23185-23191. <https://doi.org/10.1016/S0021-9258(17)31637-X>
18. Hazeki, O., Okada, T., Kurosu, H., Takasuga, S., Suzuki, T., Katada, T. (1998) Activation of PI 3-kinase by G protein βγ subunits. Life Sciences 62, 1555-1559. <https://doi.org/10.1016/S0024-3205(98)00106-4>
19. Hinsch, K.-D., Rosenthal, W., Spicher, K., Binder, T., Gausepohl, H., Frank, R., Schultz, G., Joost, H. G. (1998) Adipocyte plasma membranes contain two Gi subtypes but are devoid of Go. FEBS Lett. 238, 191-196. <https://doi.org/10.1016/0014-5793(88)80254-0>
20. Inukai, K., Funaki, M., Ogihara, T., Katagiri, H., Kanda, A., Anai, M., Fukushima, Y., Hosaka, T., Suzuki, M., Shin, B.-C., Takata, K., Yazaki, Y., Kikuchi, M., Oka, Y., Asano, T. (1997) p85α gene generates three isoforms of regulatory subunit for phosphatidylinositol 3-kinase (PI 3-kinase), p50α, p55α, and p85α, with different PI 3-kinase activity elevating responses to insulin. J. Biol. Chem. 272, 7873-7882. <https://doi.org/10.1074/jbc.272.12.7873>
21. Katada, T., Northup, J. K., Bokoch, G. M., Ui, M., Gilman, A. G. (1984) The inhibitory guanine nucleotide-binding regulatory component of adenylate cyclase. J. Biol. Chem. 259, 3578-3585. <https://doi.org/10.1016/S0021-9258(17)43133-4>
22. Kelly, K. L., Ruderman, N. B., Chen, K. S. (1992) Phosphatidylinositol-3-kinase in isolated rat adipocytes. J. Biol. Chem. 267, 3423-3428. <https://doi.org/10.1016/S0021-9258(19)50748-7>
23. Kelly, K. L., Ruderman, N. B. (1993) Insulin-stimulated phosphatidylinositol 3-kinase. J. Biol. Chem. 268, 4391-4398. <https://doi.org/10.1016/S0021-9258(18)53622-X>
24. Knight, Z. A., Gonzalez, B., Feldman, M. E., Zunder, E. R., Goldenberg, D. D., Williams, O., Loewith, R., Stokoe, D., Balla, A., Toth, B., Balla, T., Weiss, W. A., Williams, R. L., Shokat, K. M. (2006) A pharmacological map of the PI3-K family defines a role for p110α in insulin signaling. Cell 125, 733-747. <https://doi.org/10.1016/j.cell.2006.03.035>
25. Koh, H.-J., Hirshman, M. F., He, H., Li, Y., Manabe, Y., Balschi, J. A., Goodyear, L. J. (2007) Adrenaline is a critical mediator of acute exercise-induced AMP-activated protein kinase activation in adipocytes. Biochem. J. 403, 473-481. <https://doi.org/10.1042/BJ20061479>
26. Kurosu, H., Hazeki, O., Kukimoto, I., Honzawa, S., Shibasaki, M., Nakada, M., Ui, M., Katada, T. (1995) Radiolabeling of catalytic subunits of PI 3-kinases with 17β-hydroxy- 16α-[125I]iodowortmannin: identification of the Gβγ-sensitive isoform as a complex composed of 46-kDa and 100-kDa subunits. Biochem. Biophys. Res. Commun. 216, 655-661. <https://doi.org/10.1006/bbrc.1995.2672>
27. Lai, E., Rosen, O. M., Rubin, C. S. (1982) D examethasone regulates the β-adrenergic receptor subtype expressed by 3T3 L1 preadipocytes and adipocytes. J. Biol. Chem. 257, 6691-6696. <https://doi.org/10.1016/S0021-9258(18)34485-5>
28. Lindquist, J. M., Fredriksson, J. M., Rehnmark, S., Cannon, B., Nedergaard, J. (2000) β3- and α1-Adrenergic Erk1/2 activation is Src- but not Gi-mediated in brown adipocytes. J. Biol. Chem. 275, 22670-22677. <https://doi.org/10.1074/jbc.M909093199>
29. Ludvigsen, C., Jarett, L., McDonald, J. M. (1980) The characterization of catecholamine stimulation of glucose transport by rat adipocytes and isolated plasma membranes. Endocrinology 106, 786-790. <https://doi.org/10.1210/endo-106-3-786>
30. Mitchell, F. M., Griffiths, S. L., Saggerson, E. D., Houslay, M. D., Knowler, J. T., Milligan, G.. (1989) Guaninenucleotide- binding proteins expressed in rat white adipose tissue. Identification of both mRNAs and proteins corresponding to Gi1, Gi2 and Gi3. Biochem. J. 262, 403-408. <https://doi.org/10.1042/bj2620403>
31. Monjo, M., Pujol, E., Roca, P. (2005) α 2- to β3-Adrenoceptor switch in 3T3-L1 preadipocytes and adipocytes: modulation by testosterone, 17β-estradiol, and progesterone. Am. J. Physiol. Endocrinol. Metab. 289, E145-E150. <https://doi.org/10.1152/ajpendo.00563.2004>
32. Mulder, A. H., Tack, C. J., Olthaar, A. J., Smits, P., Sweep, F. C. G. J., Bosch, R. R. (2005) Adrenergic receptor stimulation attenuates insulin-stimulated glucose uptake in 3T3-L1 adipocytes by inhibiting GLUT4 translocation. Am. J. Physiol. Endocrinol. Metab. 289, E627-E633. <https://doi.org/10.1152/ajpendo.00079.2004>
33. Mulligan, J. D., Gonzalez, A. A., Stewart, A. M., Carey, H. V., Saupe, K. W. (2007) Upregulation of AMPK during cold exposure occurs via distinct mechanisms in brown and white adipose tissue of the mouse. J. Physiol. 580, 677-684. <https://doi.org/10.1113/jphysiol.2007.128652>
34. Murakami, T., Simonds, W. F., Spiegel, A. M. (1992) Sitespecific antibodies directed against G protein β and γ subunits effects on α and βγ subunit interaction. Biochemistry 31, 2905-2911. <https://doi.org/10.1021/bi00126a009>
35. Nisoli, E., Tonello, C., Landi, M., Carruba, M. O. (1996) Functional studies of the first selective β3-adrenergic receptor antagonist SR 59230A in rat brown adipocytes. Mol. Pharmacol. 49, 7-14.
36. Ohsaka, Y., Tokumitsu, Y., Nomura, Y. (1997) Suppression of insulin-stimulated phosphatidylinositol 3-kinase activity by the β3-adrenoceptor agonist CL316243 in rat adipocytes. FEBS Lett. 402, 246-250. <https://doi.org/10.1016/S0014-5793(97)00007-0>
37. Ohsaka, Y., Murakami, T., Yoshida, T., Tokumitsu, Y. (1998) Comparison of atypical β3-adrenoceptor agonists with their respective metabolic activities in rat white adipocytes. Jpn J. Pharmacol. 77, 41-51. <https://doi.org/10.1254/jjp.77.41>
38. Ohsaka, Y., Nishino, H., Nomura, Y. (2010) Induction of phospho-Thr-172 AMPK in 3T3-L1 adipocytes exposed to cold or treated with anisomycin, mithramycin A, and ionic compounds. CryoLett. 31, 218-229.
39. Ohsaka, Y., Nishino, H. (2013) 3T3-L1 adipocytes possess anandamide- and epinephrine-responsive machinery for MDM2 distribution to the plasma membrane. Gen. Physiol. Biophys. 32, 261-275. <https://doi.org/10.4149/gpb_2013029>
40. Ozanne, S. E., Nave, B. T., Wang, C. L., Shepherd, P. R., Prins, J., Smith, G. D. (1997) Poor fetal nutrition causes long-term changes in expression of insulin signaling components in adipocytes. Am. J. Physiol. 273, E46-E51.
41. Ramírez-Zacarías, J. L., Castro-Muñozledo, F., Kuri-Harcuch, W. (1992) Quantitation of adipose conversion and triglycerides by staining intracytoplasmic lipids with oil red O. Histochemistry 97, 493-497. <https://doi.org/10.1007/BF00316069>
42. Robidoux, J., Kumar, N., Daniel, K. W., Moukdar, F., Cyr, M., Medvedev, A. V., Collins, S. (2006) Maximal β3-adrenergic regulation of lipolysis involves Src and epidermal growth factor receptor-dependent ERK1/2 activation. J. Biol. Chem. 281, 37794-37802. <https://doi.org/10.1074/jbc.M605572200>
43. Roskoski, R. Jr. (2012) ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol. Res. 66, 105-143. <https://doi.org/10.1016/j.phrs.2012.04.005>
44. Sajan, M. P., Standaert, M. L., Bandyopadhyay, G., Quon, M. J., Burke, T. R. Jr., Farese, R. V. (1999) Protein kinase C-ζ and phosphoinositide-dependent protein kinase-1 are required for insulin-induced activation of ERK in rat adipocytes. J. Biol. Chem. 274, 30495-30500. <https://doi.org/10.1074/jbc.274.43.30495>
45. Salt, I. P., Connell, J. M. C., Gould, G. W. (2000) 5-Aminoimidazole-4-carboxamide ribonucleoside (AICAR) inhibits insulin-stimulated glucose transport in 3T3-L1 adipocytes. Diabetes 49, 1649-1656. <https://doi.org/10.2337/diabetes.49.10.1649>
46. Sato, M., Hutchinson, D. S., Bengtsson, T., Floren, A., Langel, Ü., Horinouchi, T., Evans, B. A., Summers, R. J. (2005) Functional domains of the mouse β3-adrenoceptor associated with differential G protein coupling. J. Pharmacol. Exp. Ther. 315, 1354-1361. <https://doi.org/10.1124/jpet.105.091736>
47. Sevetson, B. R., Kong, X., Lawrence, J. C. Jr. (1993) Increasing cAMP attenuates activation of mitogen-activated protein kinase. Proc. Natl. Acad. Sci. USA 90, 10305-10309. <https://doi.org/10.1073/pnas.90.21.10305>
48. Shirakura, S., Furugohri, T., Tokumitsu, Y. (1990) Activation of glucose transport by activatory receptor agonists of adenylate cyclase in rat adipocytes. Comp. Biochem. Physiol. 97A, 81-86.
49. Soeder, K. J., Snedden, S. K., Cao, W., Della Rocca, G. J., Daniel, K. W., Luttrell, L. M., Collins, S. (1999) The β3-adrenergic receptor activates mitogen-activated protein kinase in adipocytes through a Gi-dependent mechanism. J. Biol. Chem. 274, 12017-12022. <https://doi.org/10.1074/jbc.274.17.12017>
50. Standaert, M. L., Galloway, L., Karnam, P., Bandyopadhyay, G., Moscat, J., Farese, R. V. (1997) Protein kinase C-ζ as a downstream effector of phosphatidylinositol 3-kinase during insulin stimulation in rat adipocytes. J. Biol. Chem. 272, 30075-30082. <https://doi.org/10.1074/jbc.272.48.30075>
51. Standaert, M., Bandyopadhyay, G., Galloway, L., Ono, Y., Mukai, H., Farese, R. (1998) Comparative effects of GTPγS and insulin on the activation of Rho, phosphatidylinositol 3-kinase, and protein kinase N in rat adipocytes. J. Biol. Chem. 273, 7470-7477. <https://doi.org/10.1074/jbc.273.13.7470>
52. Sternweise, P. C., Gilman, A. G. (1982) Aluminum: a requirement for activation of the regulatory component of adenylate cyclase by fluoride. Proc. Natl. Acad. Sci. USA 79, 4888-4891. <https://doi.org/10.1073/pnas.79.16.4888>
53. Suzuki, Y., Shibata, H., Inoue, S., Kojima, I. (1992) Stimulation of glucose transport by guanine nucleotides in permeabilized rat adipocytes. Biochem. Biophys. Res. Commun. 189, 572-580. <https://doi.org/10.1016/0006-291X(92)91596-I>
54. Tanti, J.-F., Grémeaux, T., Grillo, S., Calleja, V., Klippel, A., Williams, L. T., Van Obberghen, E., Le Marchand-Brustel, Y. (1996) Overexpression of a constitutively active form of phosphatidylinositol 3-kinase is sufficient to promote Glut 4 translocation in adipocytes. J. Biol. Chem. 271, 25227-25232. <https://doi.org/10.1074/jbc.271.41.25227>
55. Tanti, J.-F., Grillo, S., Grémeaux, T., Coffer, P. J., Van Obberghen, E., Le Marchand-Brustel, Y. (1997) Potential role of protein kinase B in glucose transporter 4 translocation in adipocytes. Endocrinology 138, 2005-2010. <https://doi.org/10.1210/endo.138.5.5136>
56. Villena, J. A., Viollet, B., Andreelli, F., Kahn, A., Vaulont, S., Sul, H. S. (2004) Induced adiposity and adipocyte hypertrophy in mice lacking the AMP-activated protein kinase-α2 subunit. Diabetes 53, 2242-2249. <https://doi.org/10.2337/diabetes.53.9.2242>
57. Walker, K. S., Deak, M., Paterson, A., Hudson, K., Cohen, P., Alessi, D. R. (1998) Activation of protein kinase B β and γ isoforms by insulin in vivo and by 3-phosphoinositide-dependent protein kinase-1 in vitro: comparison with protein kinase B α. Biochem. J. 331, 299-308. <https://doi.org/10.1042/bj3310299>
58. Watson, A. J., Katz, A., Simon, M. I. (1994) A fifth member of the mammalian G-protein β-subunit family. J. Biol. Chem. 269, 22150-22156. <https://doi.org/10.1016/S0021-9258(17)31768-4>
59. Watt, M. J., Holmes, A. G., Pinnamaneni, S. K., Garnham, A. P., Steinberg, G. R., Kemp, B. E., Febbraio, M. A. (2006) Regulation of HSL serine phosphorylation in skeletal muscle and adipose tissue. Am. J. Physiol. Endocrinol. Metab. 290, E500-E508. <https://doi.org/10.1152/ajpendo.00361.2005>
60. Yamaguchi, S., Katahira, H., Ozawa, S., Nakamichi, Y., Tanaka, T., Shimoyama, T., Takahashi, K., Yoshimoto, K., Imaizumi, M. O., Nagamatsu, S., Ishida, H. (2005) Activators of AMP-activated protein kinase enhance GLUT4 translocation and its glucose transport activity in 3T3-L1 adipocytes. Am. J. Physiol. Endocrinol. Metab. 289, E643-E649. <https://doi.org/10.1152/ajpendo.00456.2004>
61. Yin, W., Mu, J., Birnbaum, M. J. (2003) Role of AMPactivated protein kinase in cyclic AMP-dependent lipolysis in 3T3-L1 adipocytes. J. Biol. Chem. 278, 43074-43080. <https://doi.org/10.1074/jbc.M308484200>
62. Zmuda-Trzebiatowska, E., Manganiello, V., Degerman, E. (2007) Novel mechanisms of the regulation of protein kinase B in adipocytes; implications for protein kinase A, Epac, phosphodiesterases 3 and 4. Cell. Signal. 19, 81-86. <https://doi.org/10.1016/j.cellsig.2006.05.024>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Archive