Fol. Biol. 2014, 60, 180-186

https://doi.org/10.14712/fb2014060040180

Chemokines Induced in Human Respiratory Epithelial Cells by IL-1 Family of Cytokines

Eva Brabcová, L. Kolesár, E. Thorburn, I. Stříž

Department of Clinical and Transplant Immunology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic

Received November 2013
Accepted January 2014

References

1. Adam, E., Hansen, K. K., Astudillo Fernandez, O., Coulon, L., Bex, F., Duhant, X., Jaumotte, E., Hollenberg, M. D ., Jacquet, A. (2006) The house dust mite allergen D er p 1, unlike D er p 3, stimulates the expression of interleukin-8 in human airway epithelial cells via a proteinase-activated receptor-2-independent mechanism. J. Biol. Chem. 281, 6910-6923. <https://doi.org/10.1074/jbc.M507140200>
2. Asokananthan, N., Graham, P. T., Stewart, D. J., Bakker, A. J., Eidne, K. A., Thompson, P. J., Stewart, G. A. (2002) House dust mite allergens induce proinflammatory cytokines from respiratory epithelial cells: the cysteine protease allergen, Der p 1, activates protease-activated receptor (PAR)-2 and inactivates PAR-1. J. Immunol. 169, 4572-4578. <https://doi.org/10.4049/jimmunol.169.8.4572>
3. Barksby, H. E., Lea, S. R., Preshaw, P. M., Taylor, J. J. (2007) The expanding family of interleukin-1 cytokines and their role in destructive inflammatory disorders. Clin. Exp. Immunol. 149, 217-225. <https://doi.org/10.1111/j.1365-2249.2007.03441.x>
4. Campbell, E., Kunkel, S. L., Strieter, R. M., Lukacs, N. W. (2000) Differential roles of IL-18 in allergic airway disease: induction of eotaxin by resident cell populations exacerbates eosinophil accumulation. J. Immunol. 164, 1096-1102. <https://doi.org/10.4049/jimmunol.164.2.1096>
5. Carpenter, L. R., Moy, J. N., Roebuck, K. A. (2002) Respiratory syncytial virus and TNF α induction of chemokine gene expression involves differential activation of Rel A and NF-κB1. BMC Infect. Dis. 2, 5. <https://doi.org/10.1186/1471-2334-2-5>
6. dos Santos, C. C., Han, B., Andrade, C. F., Bai, X., Uhlig, S., Hubmayr, R., Tsang, M., Lodyga, M., Keshavjee, S., Slutsky, A. S., Liu, M. (2004) DNA microarray analysis of gene expression in alveolar epithelial cells in response to TNFα, LPS, and cyclic stretch. Physiol. Genomics 19, 331-342. <https://doi.org/10.1152/physiolgenomics.00153.2004>
7. Ekman, A. K., Sigurdardottir, G., Carlstrom, M., Kartul, N., Jenmalm, M. C., Enerback, C. (2013) Systemically elevated Th1-, Th2- and Th17-associated chemokines in psoriasis vulgaris before and after ultraviolet B treatment. Acta Derm. Venereol. 93, 527-531. <https://doi.org/10.2340/00015555-1545>
8. Graham, R. M., Paton, J. C. (2006) Differential role of CbpA and PspA in modulation of in vitro CXC chemokine responses of respiratory epithelial cells to infection with Streptococcus pneumoniae. Infect. Immun. 74, 6739-6749. <https://doi.org/10.1128/IAI.00954-06>
9. Gudmundsson, G., Hunninghake, G. W. (1999) Respiratory epithelial cells release interleukin-8 in response to a thermophilic bacteria that causes hypersensitivity pneumonitis. Exp. Lung. Res. 25, 217-228.
10. Harris, J. F., Aden, J., Lyons, C. R., Tesfaigzi, Y. (2007) Resolution of LPS-induced airway inflammation and goblet cell hyperplasia is independent of IL-18. Respir. Res. 8, 24. <https://doi.org/10.1186/1465-9921-8-24>
11. Hayakawa, H., Hayakawa, M., Kume, A., Tominaga, S. (2007) Soluble ST2 blocks interleukin-33 signaling in allergic airway inflammation. J. Biol. Chem. 282, 26369-26380. <https://doi.org/10.1074/jbc.M704916200>
12. Ho, L. H., Ohno, T., Oboki, K., Kajiwara, N., Suto, H., Iikura, M., Okayama, Y., Akira, S., Saito, H., Galli, S. J., Nakae, S. (2007) IL-33 induces IL-13 production by mouse mast cells independently of IgE-FεRI signals. J. Leukoc. Biol. 82, 1481-1490. <https://doi.org/10.1189/jlb.0407200>
13. Hoffman, S. A., Wang, L., Shah, C. V., Ahya, V. N., Pochettino, A., Olthoff, K., Shaked, A., Wille, K., Lama, V. N., Milstone, A., Ware, L. B., Orens, J., Weinacker, A., Demissie, E., Bellamy, S., Kawut, S. M., Hancock, W. W., Christie, J. D. (2009) Plasma cytokines and chemokines in primary graft dysfunction post-lung transplantation. Am. J. Transplant. 9, 389-396. <https://doi.org/10.1111/j.1600-6143.2008.02497.x>
14. Hrycek, E., Franek, A., Blaszczak, E., Dworak, J., Hrycek, A. (2012) Serum levels of selected chemokines in systemic lupus erythematosus patients. Rheumatol. Int. 33, 2423-2424. <https://doi.org/10.1007/s00296-012-2393-5>
15. Iikura, M., Suto, H., Kajiwara, N., Oboki, K., Ohno, T., Okayama, Y., Saito, H., Galli, S. J., Nakae, S. (2007) IL-33 can promote survival, adhesion and cytokine production in human mast cells. Lab. Invest. 87, 971-978. <https://doi.org/10.1038/labinvest.3700663>
16. Ishikawa, Y., Y oshimoto, T., Nakanishi, K. (2006) Contribution of IL-18-induced innate T cell activation to airway inflammation with mucus hypersecretion and airway hyperresponsiveness. Int. Immunol. 18, 847-855. <https://doi.org/10.1093/intimm/dxl021>
17. Jang, Y. J., Kwon, H. J., Lee, B. J. (2006) Effect of clarithromycin on rhinovirus-16 infection in A549 cells. Eur. Respir. J. 27, 12-19. <https://doi.org/10.1183/09031936.06.00008005>
18. Kanzawa, N., Nishigaki, K., Hayashi, T., Ishii, Y., Furukawa, S., Niiro, A., Yasui, F., Kohara, M., Morita, K., Matsushima, K., Le, M. Q., Masuda, T., Kannagi, M. (2006) Augmentation of chemokine production by severe acute respiratory syndrome coronavirus 3a/X1 and 7a/X4 proteins through NF-κB activation. FEBS Lett. 580, 6807-6812. <https://doi.org/10.1016/j.febslet.2006.11.046>
19. Kauffman, H. F., Tamm, M., Timmerman, J. A., Borger, P. (2006) House dust mite major allergens D er p 1 and D er p 5 activate human airway-derived epithelial cells by protease- dependent and protease-independent mechanisms. Clin. Mol. Allergy 4, 5. <https://doi.org/10.1186/1476-7961-4-5>
20. Kohwiwattanagun, J., Kawamura, I., Fujimura, T., Mitsuyama, M. (2007) Mycobacterial mammalian cell entry protein 1A (Mce1A)-mediated adherence enhances the chemokine production by A549 alveolar epithelial cells. Microbiol. Immunol. 51, 253-261. <https://doi.org/10.1111/j.1348-0421.2007.tb03897.x>
21. Komai-Koma, M., Xu, D., Li, Y., McKenzie, A. N., McInnes, I. B., Liew, F. Y. (2007) IL-33 is a chemoattractant for human Th2 cells. Eur. J. Immunol. 37, 2779-2786. <https://doi.org/10.1002/eji.200737547>
22. Koyama, S., Sato, E., Nomura, H., Kubo, K., Miura, M., Yamashita, T., Nagai, S., Izumi, T. (1999a) Monocyte chemotactic factors released from type II pneumocyte-like cells in response to TNF-α and IL-1α. Eur. Respir. J. 13, 820-828. <https://doi.org/10.1183/09031936.99.13482099>
23. Koyama, S., Sato, E., Nomura, H., Kubo, K., Miura, M., Yamashita, T., Nagai, S., Izumi, T. (1999b) The potential of various lipopolysaccharides to release monocyte chemotactic activity from lung epithelial cells and fibroblasts. Eur. Respir. J. 14, 545-552. <https://doi.org/10.1034/j.1399-3003.1999.14c11.x>
24. Krasna, E., Kolesar, L., Slavcev, A., Valhova, S., Kronosova, B., Jaresova, M., Striz, I. (2005) IL-18 receptor expression on epithelial cells is upregulated by TNF α. Inflammation 29, 33-37. <https://doi.org/10.1007/s10753-006-8967-1>
25. Krunkosky, T. M., Maruo, K., Potempa, J., Jarrett, C. L., Travis, J. (2005) Inhibition of tumor necrosis factor-α-induced RANTES secretion by alkaline protease in A549 cells. Am. J. Respir. Cell Mol. Biol. 33, 483-489. <https://doi.org/10.1165/rcmb.2005-0069OC>
26. Lee, C. C., Cheng, Y. W., Kang, J. J. (2005) Motorcycle exhaust particles induce IL-8 production through NF-κB activation in human airway epithelial cells. J. Toxicol. Environ. Health A 68, 1537-1555. <https://doi.org/10.1080/15287390590967496>
27. Lee, J. K., Kim, S. H., Lewis, E. C., Azam, T., Reznikov, L. L., Dinarello, C. A. (2004) D ifferences in signaling pathways by IL-1β and IL-18. Proc. Natl. Acad. Sci. USA 101, 8815-8820. <https://doi.org/10.1073/pnas.0402800101>
28. Li, L. F., Ouyang, B., Choukroun, G., Matyal, R., Mascarenhas, M., Jafari, B., Bonventre, J. V., Force, T., Quinn, D. A. (2003) Stretch-induced IL-8 depends on c-Jun NH2- terminal and nuclear factor-κB-inducing kinases. Am. J. Physiol. Lung Cell Mol. Physiol. 285, L464-475. <https://doi.org/10.1152/ajplung.00031.2003>
29. Matsubara, S., Takeda, K., Kodama, T., Joetham, A., Miyahara, N., Koya, T., Swasey, C. H., Okamoto, M., Dakhama, A., Gelfand, E. W. (2007) IL-2 and IL-18 attenuation of airway hyperresponsiveness requires STAT4, IFN-γ, and natural killer cells. Am. J. Respir. Cell Mol. Biol. 36, 324-332. <https://doi.org/10.1165/rcmb.2006-0231OC>
30. Mendez-Samperio, P., Miranda, E., Vazquez, A. (2006) Expression and secretion of CXCL-8 and CXCL-10 from mycobacterium bovis BCG-infected human epithelial cells: role of IL-4. Mediators Inflamm. 2006, 67451. <https://doi.org/10.1155/MI/2006/67451>
31. Neujahr, D. C., Perez, S. D., Mohammed, A., Ulukpo, O., Lawrence, E. C., Fernandez, F., Pickens, A., Force, S. D., Song, M., Larsen, C. P., Kirk, A. D. (2012) Cumulative exposure to γ interferon-dependent chemokines CXCL9 and CXCL10 correlates with worse outcome after lung transplant. Am. J. Transplant. 12, 438-446. <https://doi.org/10.1111/j.1600-6143.2011.03857.x>
32. O’Gorman, M. T., Jatoi, N. A., Lane, S. J., Mahon, B. P. (2005) IL-1β and TNF-α induce increased expression of CCL28 by airway epithelial cells via an NFκB-dependent pathway. Cell. Immunol. 238, 87-96. <https://doi.org/10.1016/j.cellimm.2006.02.003>
33. Ovrevik, J., Refsnes, M., Namork, E., Becher, R., Sandnes, D., Schwarze, P. E., Lag, M. (2006) Mechanisms of silicainduced IL-8 release from A549 cells: initial kinase-activation does not require EGFR activation or particle uptake. Toxicology 227, 105-116. <https://doi.org/10.1016/j.tox.2006.07.029>
34. Sachse, F., von Eiff, C., Stoll, W., Becker, K., Rudack, C. (2006) Induction of CXC chemokines in A549 airway epithelial cells by trypsin and staphylococcal proteases – a possible route for neutrophilic inflammation in chronic rhinosinusitis. Clin. Exp. Immunol. 144, 534-542. <https://doi.org/10.1111/j.1365-2249.2006.03089.x>
35. Sauty, A., Dziejman, M., Taha, R. A., Iarossi, A. S., Neote, K., Garcia-Zepeda, E. A., Hamid, Q., Luster, A. D. (1999) The T cell-specific CXC chemokines IP-10, Mig, and I-TAC are expressed by activated human bronchial epithelial cells. J. Immunol. 162, 3549-3558. <https://doi.org/10.4049/jimmunol.162.6.3549>
36. Schleimer, R. P., Kato, A., Kern, R., Kuperman, D., Avila, P. C. (2007) Epithelium: at the interface of innate and adaptive immune responses. J. Allergy Clin. Immunol. 120, 1279-1284. <https://doi.org/10.1016/j.jaci.2007.08.046>
37. Schmitz, J., Owyang, A., Oldham, E., Song, Y., Murphy, E., McClanahan, T. K., Zurawski, G., Moshrefi, M., Qin, J., Li, X., Gorman, D. M., Bazan, J. F., Kastelein, R. A. (2005) IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 23, 479-490. <https://doi.org/10.1016/j.immuni.2005.09.015>
38. Tajima, S., Bando, M., Ohno, S., Sugiyama, Y., Oshikawa, K., Tominaga, S., Itoh, K., Takada, T., Suzuki, E., Gejyo, F. (2007) ST2 gene induced by type 2 helper T cell (Th2) and proinflammatory cytokine stimuli may modulate lung injury and fibrosis. Exp. Lung Res. 33, 81-97. <https://doi.org/10.1080/01902140701198583>
39. Thomas, L. H., Wickremasinghe, M. I., Friedland, J. S. (2007) IL-1 β stimulates divergent upper and lower airway epithelial cell CCL5 secretion. Clin. Immunol. 122, 229-238. <https://doi.org/10.1016/j.clim.2006.10.004>
40. Walsh, P. T., Strom, T. B., Turka, L. A. (2004) Routes to transplant tolerance versus rejection; the role of cytokines. Immunity 20, 121-131. <https://doi.org/10.1016/S1074-7613(04)00024-X>
41. Wendel, M., Giessmann, U., Behrend, P., Augstein, A., Koslowski, R., Haufe, D., Kasper, M., Koch, T. (2008) Inflammatory-activated microvascular endothelial cells regulate interleukin-8 and monocyte chemoattractant protein- 1 expression of A549 cells in a paracrine fashion. Exp. Lung Res. 34, 85-100. <https://doi.org/10.1080/01902140701807910>
42. Zhang, Z., Liu, R., Noordhoek, J. A., Kauffman, H. F. (2005) Interaction of airway epithelial cells (A549) with spores and mycelium of Aspergillus fumigatus. J. Infect. 51, 375-382. <https://doi.org/10.1016/j.jinf.2004.12.012>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Submissions

Archive