Fol. Biol. 2014, 60, 168-179
https://doi.org/10.14712/fb2014060040168
Adipose Cells Induce Phospho-Thr-172 AMPK Production by Epinephrine or CL316243 in Mouse 3T3-L1 Adipocytes or MAPK Activation and G Protein-Associated PI3K Responses Induced by CL316243 or Aluminum Fluoride in Rat White Adipocytes
References
1. 1999) Adrenoceptor genes in human obesity. J. Intern. Med. 245, 667-672.
< , P., Hoffstedt, J. (https://doi.org/10.1046/j.1365-2796.1999.00495.x>
2. 1991) Insulin and nonhydrolyzable GTP analogs induce translocation of GLUT 4 to the plasma membrane in α-toxinpermeabilized rat adipose cells. J. Biol. Chem. 266, 4037-4040.
< , G., Hohman, R., Charron, M. J., Lodish, H. F. (https://doi.org/10.1016/S0021-9258(20)64280-6>
3. 2011) Acylated and unacylated ghrelin attenuate isoproterenol-induced lipolysis in isolated rat visceral adipocytes through activation of phosphoinositide 3-kinase γ and phosphodiesterase 3B. Biochim. Biophys. Acta 1811, 386-396.
< , A., Ghé, C., Arnoletti, E., Granata, R., Ghigo, E., Muccioli, G. (https://doi.org/10.1016/j.bbalip.2011.03.001>
4. 1992) Disodium (R,R)-5-[2-[[2-(3-chlorophenyl)-2-hydroxyethyl]- amino]propyl]-1,3-benzodioxole-2,2-dicarboxylate (CL 316,243). A potent β-adrenergic agonist virtually specific for β3 receptors. A promising antidiabetic and antiobesity agent. J. Med. Chem. 35, 3081-3084.
< , J. D., Dutia, M. D., Johnson, B. D., Wissner, A., Burns, M. G., Largis, E. E., D olan, J. A., Claus, T. H. (https://doi.org/10.1021/jm00094a025>
5. 2000) D irect binding of activated c-Src to the β3-adrenergic receptor is required for MAP kinase activation. J. Biol. Chem. 275, 38131-38134.
< , W., Luttrell, L. M., Medvedev, A. V., Pierce, K. L., Daniel, K. W., D ixon, T. M., Lefkowitz, R. J., Collins, S. (https://doi.org/10.1074/jbc.C000592200>
6. 1994) D ifferential interaction of β1- and β3-adrenergic receptors with Gi in rat adipocytes. Cell. Signal. 6, 457-465.
< , A., MacKenzie, R. G., Georgic, L. M., Granneman, J. G. (https://doi.org/10.1016/0898-6568(94)90093-0>
7. 1986) Effect of epinephrine and other lipolytic agents on intracellular lipolysis and lipoprotein lipase activity in 3T3-L1 adipocytes. J. Lipid Res. 27, 286-294.
< , S. S., Spooner, P. M., Garrison, M. M., Scow, R. O. (https://doi.org/10.1016/S0022-2275(20)38831-3>
8. 2005) Antilipolytic action of AMP-activated protein kinase in rodent adipocytes. J. Biol. Chem. 280, 25250-25257.
< , M., Diot-Dupuy, F., Bazin, R., Hainault, I., Viollet, B., Vaulont, S., Hajduch, E., Ferré, P., Foufelle, F. (https://doi.org/10.1074/jbc.M414222200>
9. 1992) Comparison of the effects of insulin and adrenergic agonists on the phosphorylation of an acid-soluble 22 kDa protein in rat epididymal fatpads and isolated fat-cells. Biochem. J. 282, 729-736.
< , T. A., Denton, R. M. (https://doi.org/10.1042/bj2820729>
10. 1984) Effects of dexamethasone on adenosine 3’,5’-monophosphate content and phosphodiesterase activities in 3T3-L1 adipocytes. Endocrinology 115, 1350-1356.
< , M. L., Manganiello, V. C., Vaughan, M. (https://doi.org/10.1210/endo-115-4-1350>
11. 2008) AMP-activated protein kinase is activated as a consequence of lipolysis in the adipocyte. J. Biol. Chem. 283, 16514-16524.
< , M.-S., Miyoshi, H., Souza, S. C., Cacicedo, J. M., Saha, A. K., Greenberg, A. S., Ruderman, N. B. (https://doi.org/10.1074/jbc.M708177200>
12. 1992) Insulin stimulates phosphatidylinositol-3-kinase activity in rat adipocytes. Eur. J. Biochem. 207, 599-606.
< , S., Ballotti, R., Kowalski-Chauvel, A., Cormont, M., Van Obberghen, E. (https://doi.org/10.1111/j.1432-1033.1992.tb17086.x>
13. 2011) Regulation of AMPactivated protein kinase by LKB1 and CaMKK in adipocytes. J. Cell. Biochem. 112, 1364-1375.
< , A., Henriksson, E., Ström, K., Jensen, T. E., Sakamoto, K., Göransson, O. (https://doi.org/10.1002/jcb.23053>
14. 2001) Stimulation of lipolysis and hormone-sensitive lipase via the extracellular signal-regulated kinase pathway. J. Biol. Chem. 276, 45456-45461.
< , A. S., Shen, W.-J., Muliro, K., Patel, S., Souza, S. C., Roth, R. A., Kraemer, F. B. (https://doi.org/10.1074/jbc.M104436200>
15. 1999) Potential role of 3-phosphoinositide-dependent protein kinase 1 (PDK1) in insulin-stimulated glucose transporter 4 translocation in adipocytes. FEBS Lett. 461, 277-279.
< , S., Grémeaux, T., Le Marchand-Brustel, Y ., Tanti, J.-F. (https://doi.org/10.1016/S0014-5793(99)01472-6>
16. 1996) Phosphatidylinositol 3-kinase is an early intermediate in the Gβγ-mediated mitogen-activated protein kinase signaling pathway. J. Biol. Chem. 271, 12133-12136.
< , B. E., Luttrell, L. M., van Biesen, T., Lefkowitz, R. J. (https://doi.org/10.1074/jbc.271.21.12133>
17. 1994) Phosphorylation of PHAS-I by mitogen-activated protein (MAP) kinase. J. Biol. Chem. 269, 23185-23191.
< , T. A. J., Haystead, C. M. M., Hu, C., Lin, T.-A., Lawrence, Jr J. C. (https://doi.org/10.1016/S0021-9258(17)31637-X>
18. 1998) Activation of PI 3-kinase by G protein βγ subunits. Life Sciences 62, 1555-1559.
< , O., Okada, T., Kurosu, H., Takasuga, S., Suzuki, T., Katada, T. (https://doi.org/10.1016/S0024-3205(98)00106-4>
19. 1998) Adipocyte plasma membranes contain two Gi subtypes but are devoid of Go. FEBS Lett. 238, 191-196.
< , K.-D., Rosenthal, W., Spicher, K., Binder, T., Gausepohl, H., Frank, R., Schultz, G., Joost, H. G. (https://doi.org/10.1016/0014-5793(88)80254-0>
20. 1997) p85α gene generates three isoforms of regulatory subunit for phosphatidylinositol 3-kinase (PI 3-kinase), p50α, p55α, and p85α, with different PI 3-kinase activity elevating responses to insulin. J. Biol. Chem. 272, 7873-7882.
< , K., Funaki, M., Ogihara, T., Katagiri, H., Kanda, A., Anai, M., Fukushima, Y., Hosaka, T., Suzuki, M., Shin, B.-C., Takata, K., Yazaki, Y., Kikuchi, M., Oka, Y., Asano, T. (https://doi.org/10.1074/jbc.272.12.7873>
21. 1984) The inhibitory guanine nucleotide-binding regulatory component of adenylate cyclase. J. Biol. Chem. 259, 3578-3585.
< , T., Northup, J. K., Bokoch, G. M., Ui, M., Gilman, A. G. (https://doi.org/10.1016/S0021-9258(17)43133-4>
22. 1992) Phosphatidylinositol-3-kinase in isolated rat adipocytes. J. Biol. Chem. 267, 3423-3428.
< , K. L., Ruderman, N. B., Chen, K. S. (https://doi.org/10.1016/S0021-9258(19)50748-7>
23. 1993) Insulin-stimulated phosphatidylinositol 3-kinase. J. Biol. Chem. 268, 4391-4398.
< , K. L., Ruderman, N. B. (https://doi.org/10.1016/S0021-9258(18)53622-X>
24. 2006) A pharmacological map of the PI3-K family defines a role for p110α in insulin signaling. Cell 125, 733-747.
< , Z. A., Gonzalez, B., Feldman, M. E., Zunder, E. R., Goldenberg, D. D., Williams, O., Loewith, R., Stokoe, D., Balla, A., Toth, B., Balla, T., Weiss, W. A., Williams, R. L., Shokat, K. M. (https://doi.org/10.1016/j.cell.2006.03.035>
25. 2007) Adrenaline is a critical mediator of acute exercise-induced AMP-activated protein kinase activation in adipocytes. Biochem. J. 403, 473-481.
< , H.-J., Hirshman, M. F., He, H., Li, Y., Manabe, Y., Balschi, J. A., Goodyear, L. J. (https://doi.org/10.1042/BJ20061479>
26. 1995) Radiolabeling of catalytic subunits of PI 3-kinases with 17β-hydroxy- 16α-[125I]iodowortmannin: identification of the Gβγ-sensitive isoform as a complex composed of 46-kDa and 100-kDa subunits. Biochem. Biophys. Res. Commun. 216, 655-661.
< , H., Hazeki, O., Kukimoto, I., Honzawa, S., Shibasaki, M., Nakada, M., Ui, M., Katada, T. (https://doi.org/10.1006/bbrc.1995.2672>
27. 1982) D examethasone regulates the β-adrenergic receptor subtype expressed by 3T3 L1 preadipocytes and adipocytes. J. Biol. Chem. 257, 6691-6696.
< , E., Rosen, O. M., Rubin, C. S. (https://doi.org/10.1016/S0021-9258(18)34485-5>
28. 2000) β3- and α1-Adrenergic Erk1/2 activation is Src- but not Gi-mediated in brown adipocytes. J. Biol. Chem. 275, 22670-22677.
< , J. M., Fredriksson, J. M., Rehnmark, S., Cannon, B., Nedergaard, J. (https://doi.org/10.1074/jbc.M909093199>
29. 1980) The characterization of catecholamine stimulation of glucose transport by rat adipocytes and isolated plasma membranes. Endocrinology 106, 786-790.
< , C., Jarett, L., McDonald, J. M. (https://doi.org/10.1210/endo-106-3-786>
30. 1989) Guaninenucleotide- binding proteins expressed in rat white adipose tissue. Identification of both mRNAs and proteins corresponding to Gi1, Gi2 and Gi3. Biochem. J. 262, 403-408.
< , F. M., Griffiths, S. L., Saggerson, E. D., Houslay, M. D., Knowler, J. T., Milligan, G.. (https://doi.org/10.1042/bj2620403>
31. 2005) α 2- to β3-Adrenoceptor switch in 3T3-L1 preadipocytes and adipocytes: modulation by testosterone, 17β-estradiol, and progesterone. Am. J. Physiol. Endocrinol. Metab. 289, E145-E150.
< , M., Pujol, E., Roca, P. (https://doi.org/10.1152/ajpendo.00563.2004>
32. 2005) Adrenergic receptor stimulation attenuates insulin-stimulated glucose uptake in 3T3-L1 adipocytes by inhibiting GLUT4 translocation. Am. J. Physiol. Endocrinol. Metab. 289, E627-E633.
< , A. H., Tack, C. J., Olthaar, A. J., Smits, P., Sweep, F. C. G. J., Bosch, R. R. (https://doi.org/10.1152/ajpendo.00079.2004>
33. 2007) Upregulation of AMPK during cold exposure occurs via distinct mechanisms in brown and white adipose tissue of the mouse. J. Physiol. 580, 677-684.
< , J. D., Gonzalez, A. A., Stewart, A. M., Carey, H. V., Saupe, K. W. (https://doi.org/10.1113/jphysiol.2007.128652>
34. 1992) Sitespecific antibodies directed against G protein β and γ subunits effects on α and βγ subunit interaction. Biochemistry 31, 2905-2911.
< , T., Simonds, W. F., Spiegel, A. M. (https://doi.org/10.1021/bi00126a009>
35. 1996) Functional studies of the first selective β3-adrenergic receptor antagonist SR 59230A in rat brown adipocytes. Mol. Pharmacol. 49, 7-14.
, E., Tonello, C., Landi, M., Carruba, M. O. (
36. 1997) Suppression of insulin-stimulated phosphatidylinositol 3-kinase activity by the β3-adrenoceptor agonist CL316243 in rat adipocytes. FEBS Lett. 402, 246-250.
< , Y., Tokumitsu, Y., Nomura, Y. (https://doi.org/10.1016/S0014-5793(97)00007-0>
37. 1998) Comparison of atypical β3-adrenoceptor agonists with their respective metabolic activities in rat white adipocytes. Jpn J. Pharmacol. 77, 41-51.
< , Y., Murakami, T., Yoshida, T., Tokumitsu, Y. (https://doi.org/10.1254/jjp.77.41>
38. 2010) Induction of phospho-Thr-172 AMPK in 3T3-L1 adipocytes exposed to cold or treated with anisomycin, mithramycin A, and ionic compounds. CryoLett. 31, 218-229.
, Y., Nishino, H., Nomura, Y. (
39. 2013) 3T3-L1 adipocytes possess anandamide- and epinephrine-responsive machinery for MDM2 distribution to the plasma membrane. Gen. Physiol. Biophys. 32, 261-275.
< , Y., Nishino, H. (https://doi.org/10.4149/gpb_2013029>
40. 1997) Poor fetal nutrition causes long-term changes in expression of insulin signaling components in adipocytes. Am. J. Physiol. 273, E46-E51.
, S. E., Nave, B. T., Wang, C. L., Shepherd, P. R., Prins, J., Smith, G. D. (
41. 1992) Quantitation of adipose conversion and triglycerides by staining intracytoplasmic lipids with oil red O. Histochemistry 97, 493-497.
< , J. L., Castro-Muñozledo, F., Kuri-Harcuch, W. (https://doi.org/10.1007/BF00316069>
42. 2006) Maximal β3-adrenergic regulation of lipolysis involves Src and epidermal growth factor receptor-dependent ERK1/2 activation. J. Biol. Chem. 281, 37794-37802.
< , J., Kumar, N., Daniel, K. W., Moukdar, F., Cyr, M., Medvedev, A. V., Collins, S. (https://doi.org/10.1074/jbc.M605572200>
43. 2012) ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol. Res. 66, 105-143.
< , R. Jr. (https://doi.org/10.1016/j.phrs.2012.04.005>
44. 1999) Protein kinase C-ζ and phosphoinositide-dependent protein kinase-1 are required for insulin-induced activation of ERK in rat adipocytes. J. Biol. Chem. 274, 30495-30500.
< , M. P., Standaert, M. L., Bandyopadhyay, G., Quon, M. J., Burke, T. R. Jr., Farese, R. V. (https://doi.org/10.1074/jbc.274.43.30495>
45. 2000) 5-Aminoimidazole-4-carboxamide ribonucleoside (AICAR) inhibits insulin-stimulated glucose transport in 3T3-L1 adipocytes. Diabetes 49, 1649-1656.
< , I. P., Connell, J. M. C., Gould, G. W. (https://doi.org/10.2337/diabetes.49.10.1649>
46. 2005) Functional domains of the mouse β3-adrenoceptor associated with differential G protein coupling. J. Pharmacol. Exp. Ther. 315, 1354-1361.
< , M., Hutchinson, D. S., Bengtsson, T., Floren, A., Langel, Ü., Horinouchi, T., Evans, B. A., Summers, R. J. (https://doi.org/10.1124/jpet.105.091736>
47. 1993) Increasing cAMP attenuates activation of mitogen-activated protein kinase. Proc. Natl. Acad. Sci. USA 90, 10305-10309.
< , B. R., Kong, X., Lawrence, J. C. Jr. (https://doi.org/10.1073/pnas.90.21.10305>
48. 1990) Activation of glucose transport by activatory receptor agonists of adenylate cyclase in rat adipocytes. Comp. Biochem. Physiol. 97A, 81-86.
, S., Furugohri, T., Tokumitsu, Y. (
49. 1999) The β3-adrenergic receptor activates mitogen-activated protein kinase in adipocytes through a Gi-dependent mechanism. J. Biol. Chem. 274, 12017-12022.
< , K. J., Snedden, S. K., Cao, W., Della Rocca, G. J., Daniel, K. W., Luttrell, L. M., Collins, S. (https://doi.org/10.1074/jbc.274.17.12017>
50. 1997) Protein kinase C-ζ as a downstream effector of phosphatidylinositol 3-kinase during insulin stimulation in rat adipocytes. J. Biol. Chem. 272, 30075-30082.
< , M. L., Galloway, L., Karnam, P., Bandyopadhyay, G., Moscat, J., Farese, R. V. (https://doi.org/10.1074/jbc.272.48.30075>
51. 1998) Comparative effects of GTPγS and insulin on the activation of Rho, phosphatidylinositol 3-kinase, and protein kinase N in rat adipocytes. J. Biol. Chem. 273, 7470-7477.
< , M., Bandyopadhyay, G., Galloway, L., Ono, Y., Mukai, H., Farese, R. (https://doi.org/10.1074/jbc.273.13.7470>
52. 1982) Aluminum: a requirement for activation of the regulatory component of adenylate cyclase by fluoride. Proc. Natl. Acad. Sci. USA 79, 4888-4891.
< , P. C., Gilman, A. G. (https://doi.org/10.1073/pnas.79.16.4888>
53. 1992) Stimulation of glucose transport by guanine nucleotides in permeabilized rat adipocytes. Biochem. Biophys. Res. Commun. 189, 572-580.
< , Y., Shibata, H., Inoue, S., Kojima, I. (https://doi.org/10.1016/0006-291X(92)91596-I>
54. 1996) Overexpression of a constitutively active form of phosphatidylinositol 3-kinase is sufficient to promote Glut 4 translocation in adipocytes. J. Biol. Chem. 271, 25227-25232.
< , J.-F., Grémeaux, T., Grillo, S., Calleja, V., Klippel, A., Williams, L. T., Van Obberghen, E., Le Marchand-Brustel, Y. (https://doi.org/10.1074/jbc.271.41.25227>
55. 1997) Potential role of protein kinase B in glucose transporter 4 translocation in adipocytes. Endocrinology 138, 2005-2010.
< , J.-F., Grillo, S., Grémeaux, T., Coffer, P. J., Van Obberghen, E., Le Marchand-Brustel, Y. (https://doi.org/10.1210/endo.138.5.5136>
56. 2004) Induced adiposity and adipocyte hypertrophy in mice lacking the AMP-activated protein kinase-α2 subunit. Diabetes 53, 2242-2249.
< , J. A., Viollet, B., Andreelli, F., Kahn, A., Vaulont, S., Sul, H. S. (https://doi.org/10.2337/diabetes.53.9.2242>
57. 1998) Activation of protein kinase B β and γ isoforms by insulin in vivo and by 3-phosphoinositide-dependent protein kinase-1 in vitro: comparison with protein kinase B α. Biochem. J. 331, 299-308.
< , K. S., Deak, M., Paterson, A., Hudson, K., Cohen, P., Alessi, D. R. (https://doi.org/10.1042/bj3310299>
58. 1994) A fifth member of the mammalian G-protein β-subunit family. J. Biol. Chem. 269, 22150-22156.
< , A. J., Katz, A., Simon, M. I. (https://doi.org/10.1016/S0021-9258(17)31768-4>
59. 2006) Regulation of HSL serine phosphorylation in skeletal muscle and adipose tissue. Am. J. Physiol. Endocrinol. Metab. 290, E500-E508.
< , M. J., Holmes, A. G., Pinnamaneni, S. K., Garnham, A. P., Steinberg, G. R., Kemp, B. E., Febbraio, M. A. (https://doi.org/10.1152/ajpendo.00361.2005>
60. 2005) Activators of AMP-activated protein kinase enhance GLUT4 translocation and its glucose transport activity in 3T3-L1 adipocytes. Am. J. Physiol. Endocrinol. Metab. 289, E643-E649.
< , S., Katahira, H., Ozawa, S., Nakamichi, Y., Tanaka, T., Shimoyama, T., Takahashi, K., Yoshimoto, K., Imaizumi, M. O., Nagamatsu, S., Ishida, H. (https://doi.org/10.1152/ajpendo.00456.2004>
61. 2003) Role of AMPactivated protein kinase in cyclic AMP-dependent lipolysis in 3T3-L1 adipocytes. J. Biol. Chem. 278, 43074-43080.
< , W., Mu, J., Birnbaum, M. J. (https://doi.org/10.1074/jbc.M308484200>
62. 2007) Novel mechanisms of the regulation of protein kinase B in adipocytes; implications for protein kinase A, Epac, phosphodiesterases 3 and 4. Cell. Signal. 19, 81-86.
< , E., Manganiello, V., Degerman, E. (https://doi.org/10.1016/j.cellsig.2006.05.024>