Fol. Biol. 2014, 60, 281-285

https://doi.org/10.14712/fb2014060060281

Prolactin Increases Expression of Cytoskeletal Proteins in SK-N-SH Cells

T. Havránek1, Z. Bačová1,2, V. Štrbák1,2, Z. Lešťanová1, Ján Bakoš1,3

1Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
2Department of Normal and Pathological Physiology, Faculty of Medicine, Slovak Medical University in Bratislava, Slovakia
3Institute of Physiology, Faculty of Medicine in Bratislava, Comenius University in Bratislava, Slovakia

Received May 2014
Accepted June 2014

References

1. Ahonen, T. J., Härkönen, P. L., Laine, J., Rui, H., Martikainen, P. M., Nevalainen, M. T. (1999) Prolactin is a survival factor for androgen-deprived rat dorsal and lateral prostate epithelium in organ culture. Endocrinology 140, 5412-5421. <https://doi.org/10.1210/endo.140.11.7090>
2. Arumugam, R., Fleenor, D ., Lu, D ., Freemark, M. (2011) Differential and complementary effects of glucose and prolactin on islet D NA synthesis and gene expression. Endocrinology 152, 856-868. <https://doi.org/10.1210/en.2010-1258>
3. Blumcke, I., Schewe, J. C., Normann, S., Brustle, O., Schramm, J., Elger, C. E., Wiestler, O. D . (2001) Increase of nestin-immunoreactive neural precursor cells in the dentate gyrus of pediatric patients with early-onset temporal lobe epilepsy. Hippocampus 11, 311-321. <https://doi.org/10.1002/hipo.1045>
4. Brooks, C. L. (2012) Molecular mechanisms of prolactin and its receptor. Endocr. Rev. 33, 504-525. <https://doi.org/10.1210/er.2011-1040>
5. Chalisova, N. I., Mel’kishev, V. F., Akoev, G. N., Liudyno, M. I., Kurenkova, T. (1991) The stimulating effect of prolactin on the neurite growth of sensory neurons in an organotypic culture. Tsitologiia 33, 29-31. (in Russsian)
6. Choi, S. A., Hwang, S. K., Wang, K. C., Cho, B. K., Phi, J. H., Lee, J. Y., Jung, H. W., Lee, D . H., Kim, S. K. (2011) Therapeutic efficacy and safety of TRAIL-producing human adipose tissue-derived mesenchymal stem cells against experimental brainstem glioma. Neuro. Oncol. 13, 61-69. <https://doi.org/10.1093/neuonc/noq147>
7. Dagvadorj, A., Collins, S., Jomain, J. B., Abdulghani, J., Karras, J., Zellweger, T., Li, H., Nurmi, M., Alanen, K., Mirtti, T., Visakorpi, T., Bubendorf, L., Goffin, V., Nevalainen, M. T. (2007) Autocrine prolactin promotes prostate cancer cell growth via Janus kinase-2-signal transducer and activator of transcription-5a/b signaling pathway. Endocrinology 148, 3089-3101. <https://doi.org/10.1210/en.2006-1761>
8. Dehmelt, L., Halpain, S. (2005) The MAP2/Tau family of microtubule-associated proteins. Genome. Biol. 204, 1-10.
9. DeVito, W. J., Avakian, C., Stone, S., Okulicz, W. C. (1993) Prolactin-stimulated mitogenesis of cultured astrocytes is mediated by a protein kinase C-dependent mechanism. J. Neurochem. 60, 832-842. <https://doi.org/10.1111/j.1471-4159.1993.tb03227.x>
10. Ducret, T., Boudina, S., Sorin, B., Vacher, A.M., Gourdou, I., Liguoro, D., Guerin, J., Bresson-Bepoldin, L., Vacher, P. (2002) Effects of prolactin on intracellular calcium concentration and cell proliferation in human glioma cells. Glia 38, 200-214. <https://doi.org/10.1002/glia.10056>
11. Ehrmann, J., Kolar, Z., Mokry, J. (2005) Nestin as a diagnostic and prognostic marker: immunohistochemical analysis of its expression in different tumours. J. Clin. Pathol. 58, 222-223. <https://doi.org/10.1136/jcp.2004.021238>
12. Forsyth, I. A., Wallis, M. (2002) Growth hormone and prolactin- molecular and functional evolution. J. Mammary Gland Biol. Neoplasia 7, 291-312. <https://doi.org/10.1023/A:1022804817104>
13. Hao, H. N., Parker, G. C., Zhao, J., Barami, K., Lyman, W. D. (2003) D ifferential responses of human neural and hematopoietic stem cells to ethanol exposure. J. Hematother. Stem Cell Res. 12, 389-399. <https://doi.org/10.1089/152581603322286024>
14. Harada, A., Teng, J., Takei, Y., Oguchi, K., Hirokawa, N. (2002) MAP2 is required for dendrite elongation, PKA anchoring in dendrites, and proper PKA signal transduction. J. Cell. Biol. 158, 541-549. <https://doi.org/10.1083/jcb.200110134>
15. Hockfield, S., McKay, R. D . (1985) Identification of major cell classes in the developing mammalian nervous system. J. Neurosci. 5, 3310-3328. <https://doi.org/10.1523/JNEUROSCI.05-12-03310.1985>
16. Jing, Y. H., Hou, Y. P., Song, Y. F., Yin, J. (2012) Methylprednisolone improves the survival of new neurons following transient cerebral ischemia in rats. Acta Neurobiol. Exp. (Wars.) 72, 240-252. <https://doi.org/10.55782/ane-2012-1897>
17. Khodr, C. E., Hurley, D . L., Phelps, C. J. (2009) Prolactin induces tuberoinfundibular dopaminergic neuron differentiation in Snell dwarf mice if administered beginning at 3 days of age. J. Neuroendocrinol. 21, 558-567. <https://doi.org/10.1111/j.1365-2826.2009.01869.x>
18. Kim, S. Y., Lee, S. H., Kim, B. M., Kim, E. H., Min, B. H., Bendayan, M., Park, I. S. (2004) Activation of nestin-positive duct stem (NPDS) cells in pancreas upon neogenic motivation and possible cytodifferentiation into insulinsecreting cells from NPDS cells. Dev. Dyn. 230, 1-11. <https://doi.org/10.1002/dvdy.20012>
19. Krupkova, O. Jr., Loja, T., Zambo, I., Veselska, R. (2010) Nestin expression in human tumors and tumor cell lines. Neoplasma 57, 291-298. <https://doi.org/10.4149/neo_2010_04_291>
20. Larsen, C. M., Grattan, D . R. (2012) Prolactin, neurogenesis, and maternal behaviors. Brain Behav. Immun. 26, 201-209. <https://doi.org/10.1016/j.bbi.2011.07.233>
21. Lendahl, U., Zimmerman, L. B., McKay, R. D . (1990) CNS stem cells express a new class of intermediate filament protein. Cell 60, 585-595. <https://doi.org/10.1016/0092-8674(90)90662-X>
22. Livak, K. J., Schmittgen, T. D . (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔC T Method. Methods 25, 402-408. <https://doi.org/10.1006/meth.2001.1262>
23. Mak, G. K., Weiss, S. (2010) Paternal recognition of adult offspring mediated by newly generated CNS neurons. Nat. Neurosci. 13, 753-758. <https://doi.org/10.1038/nn.2550>
24. Means, A. L., Meszoely, I. M., Suzuki, K., Miyamoto, Y., Rustgi, A. K., Coffey, R. J. Jr., Wright, C. V., Stoffers, D. A., Leach, S. D . (2005) Pancreatic epithelial plasticity mediated by acinar cell transdifferentiation and generation of nestin-positive intermediates. Development 132, 3767-3776. <https://doi.org/10.1242/dev.01925>
25. Nitti, M., Furfaro, A. L., Cevasco, C., Traverso, N., Marinari, U. M., Pronzato, M. A., Domenicotti, C. (2010) PKC δ and NADPH oxidase in retinoic acid-induced neuroblastoma cell differentiation. Cell. Signal. 22, 828-835. <https://doi.org/10.1016/j.cellsig.2010.01.007>
26. Pathipati, P., Gorba, T., Scheepens, A., Goffin, V., Sun, Y., Fraser, M. (2011) Growth hormone and prolactin regulate human neural stem cell regenerative activity. Neuroscience 190, 409-427. <https://doi.org/10.1016/j.neuroscience.2011.05.029>
27. Roky, R., Paut-Pagano, L., Goffin, V., Kitahama, K., Valatx, J. L., Kelly, P. A., Jouvet, M. (1996) D istribution of prolactin receptors in the rat forebrain. Immunohistochemical study. Neuroendocrinology 63, 422-429. <https://doi.org/10.1159/000127067>
28. Toma, J. G., Akhavan, M., Fernandes, K. J., Barnabe-Heider, F., Sadikot, A., Kaplan, D . R., Miller, F. D . (2001) Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat. Cell Biol. 3, 778-784. <https://doi.org/10.1038/ncb0901-778>
29. Um, M., Lodish, H. F. (2006) Antiapoptotic effects of erythropoietin in differentiated neuroblastoma SH-SY5Y cells require activation of both the STAT5 and AKT signaling pathways. J. Biol. Chem. 281, 5648-5656. <https://doi.org/10.1074/jbc.M510943200>
30. Van Coppenolle, F., Skryma, R., Ouadid-Ahidouch, H., Slomianny, C., Roudbaraki, M., Delcourt, P., Dewailly, E., Humez, S., Crépin, A., Gourdou, I., Djiane, J., Bonnal, J. L., Mauroy, B., Prevarskaya, N. (2004) Prolactin stimulates cell proliferation through a long form of prolactin receptor and K+ channel activation. Biochem. J. 377, 569-578. <https://doi.org/10.1042/bj20030859>
31. Walker, T. L., Vukovic, J., Koudijs, M. M., Blackmore, D. G., Mackay, E. W., Sykes, A. M., Overall, R. W., Hamlin, A. S., Bartlett, P. F. (2012) Prolactin stimulates precursor cells in the adult mouse hippocampus. PLoS One 7, e44371 1-11. <https://doi.org/10.1371/journal.pone.0044371>
32. Weiss, S., Siebzehnrübl, F. A., Kreutzer, J., Blümcke, I., Buslei, R. (2009) Evidence for a progenitor cell population in the human pituitary. Clin. Neuropathol. 28, 309-318. <https://doi.org/10.5414/NPP28309>
33. Wiese, C., Rolletschek, A., Kania, G., Blyszczuk, P., Tarasov, K. V., Tarasova, Y., Wersto, R. P., Boheler, K. R., Wobus, A. M. (2004) Nestin expression – a property of multi-lineage progenitor cells? Cell. Mol. Life Sci. 61, 2510-2522. <https://doi.org/10.1007/s00018-004-4144-6>
34. Yamaguchi, S., Fujii-Taira, I., Murakami, A., Hirose, N., Aoki, N., Izawa, E., Fujimoto, Y., Takano, T., Matsushima, T., Homma, K. J (2008) Up-regulation of microtubule-associated protein 2 accompanying the filial imprinting of domestic chicks (Gallus gallus domesticus). Brain Res. Bull. 76, 282-288. <https://doi.org/10.1016/j.brainresbull.2008.02.010>
35. Yang, N., Liu, C., Peck, A. R., Girondo, M. A., Yanac, A. F., Tran, T. H., Utama, F. E., Tanaka, T., Freydin, B., Chervoneva, I., Hyslop, T., Kovatich, A. J., Hooke, A. J., Shriver, C. D ., Rui, H. (2013) Prolactin-Stat5 signaling in breast cancer is potently disrupted by acidosis within the tumor microenvironment. Breast Cancer Res. 15, R73. <https://doi.org/10.1186/bcr3467>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Archive