Fol. Biol. 2015, 61, 1-7

https://doi.org/10.14712/fb2015061010001

Influence of Acyclic Nucleoside Phosphonate Antivirals on Gene Expression of Chemokine Receptors CCR5 and CXCR4

Petr Potměšil1, Antonín Holý2, Z. Zídek3

1Department of Pharmacology, Third Faculty of Medicine, Charles University in Prague, Czech Republic
2Institute of Organic Chemistry and Biochemistry of Academy of Sciences of the Czech Republic v. v. i., Prague, Czech Republic
3Institute of Experimental Medicine of Academy of Sciences of the Czech Republic v. v. i., Prague, Czech Republic

Received May 2014
Accepted December 2014

References

1. Ancuta, P., Bakri, Y., Chomont, N., Hocini, H., Gabuzda, D., Haeffner-Cavaillon, N. (2001) Opposite effects of IL-10 on the ability of dendritic cells and macrophages to replicate primary CXCR4-dependent HIV-1 strains. J. Immunol. 166, 4244-4253. <https://doi.org/10.4049/jimmunol.166.6.4244>
2. Berger, E. A., Murphy, P. M., Farber, J. M. (1999) Chemokine receptors as HIV-1 co-receptors: roles in viral entry, tropism and disease. Annu Rev. Immunol. 17, 657-700. <https://doi.org/10.1146/annurev.immunol.17.1.657>
3. Biswas, P., Mantelli, B., Delfanti, F., Cota, M., Vallanti, G., de Filippi, C., Mengozzi, M., Vicenzi, E., Lazzarin, A., Poli, G. (2001) Tumor necrosis factor-α drives HIV-1 replication in U937 cell clones and upregulates CXCR4. Cytokine 13, 55-59. <https://doi.org/10.1006/cyto.2000.0798>
4. Blanpain, C., Migeotte, I., Lee, B., Vakili, J., Doranz, B. J., Govaerts, C., Vassart, G., Doms, R. W., Parmentier, M. (1999) CCR5 binds multiple CC-chemokines, MCP-3 acts as a natural antagonist. Blood 94, 1899-1905. <https://doi.org/10.1182/blood.V94.6.1899>
5. Cocchi, F., DeVico, A. L., Garzino-Demo, A., Arya S. K., Gallo, R. C., Lusso, P. (1995) Identification of RANTES, macrophage inflammatory protein MIP-1 α and MIP-1 β as the major HIV suppressive factors produced by CD8+ T cells. Science 270, 1811-1815. <https://doi.org/10.1126/science.270.5243.1811>
6. Croitoru-Lamoury, J., Guillemin, G., Boussin, F., Mognetti, B., Gigout, L., Cheret, A. (2003) Expression of chemokines and their receptors in human and simian astrocytes: evidence for central role of TNF-α and IFN-γ in CXRC4 and CCR5 modulation. Glia 41, 354-370. <https://doi.org/10.1002/glia.10181>
7. Dean, M., Crington, M., Winkler, C., Hutlley, G. A., Smith, M. W., Allikmets, R., Goedert, J. J., Buchbinder, S. P., Vittinghoff, E., Gomperts,E., Donfield, S., Vlahov, D., Kaslow, R., Saah, A., Rinaldo, C., Detels, R., O’Brien, S.J. (1996) Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Science 273, 1856-1862. <https://doi.org/10.1126/science.273.5283.1856>
8. De Clercq, E. (2004) HIV-chemotherapy and prophylaxis: new drugs, leads and approaches. Int. J. Biochem. Cell Biol. 36, 1800-1822. <https://doi.org/10.1016/j.biocel.2004.02.015>
9. De Clercq, E. (2013) Antivirals: past, present and future. Biochem. Pharmacol. 85, 727-744. <https://doi.org/10.1016/j.bcp.2012.12.011>
10. Giaquinto, C., Morelli, E., Fregonese, F., Rampon, O., Penqazzato, M., De Rossi, A., D’Elia, R. (2008) Current and future antiretroviral treatment options in paediatric HIV infection. Clin. Drug Investig. 28, 375-397. <https://doi.org/10.2165/00044011-200828060-00005>
11. Holý, A., Votruba, I., Merta, A., Černý, J., Veselý, J., Vlach, J., Šedivá, K., Rosenberg , I., Otmar, M., Hrebabecký, H. (1990) Acyclic nucleotide analogues: synthesis, antiviral activity and inhibitory effects on some cellular and virusencoded enzymes in vitro. Antiviral Res. 13, 295-311. <https://doi.org/10.1016/0166-3542(90)90014-X>
12. Holý, A. (2001) Antiviral agents in 2000 – and then what next? Cas. Lek. Cesk. 140, 583-591. (in Czech)
13. Holý, A., Votruba, I., Tlouštová, E., Masojídková, M. (2001) Synthesis and cytostatic activity of N-[2-(phosphonomethoxy) alkyl] derivatives of N6-substituted adenines, 2,6-diaminopurines and related compounds. Collect. Czech. Chem. Commun. 66, 1545-1592. <https://doi.org/10.1135/cccc20011545>
14. Hornung, F., Scala, G., Leonardo, M. J. (2000) TNF-α induced secretion of C-C chemokines modulates C-C chemokine receptor 5 expression on peripheral blood lymphocytes. J. Immunol. 164, 6180-6187. <https://doi.org/10.4049/jimmunol.164.12.6180>
15. Housmand, P., Zlotnik, A. (2003) Therapeutic applications in the chemokine superfamily. Curr. Opin. Chem. Biol. 7, 457-460. <https://doi.org/10.1016/S1367-5931(03)00086-3>
16. Jinquan, T., Quan, S., Jacobi, H. H., Madsen, H. O., Glue, C., Skov, P. C., Malling, H. J., Poulsen, L. K. (2000) CXC chemokine receptor 4 expression and stromal cell-derived factor 1 α-induced chemotaxis in CD4+ T lymphocytes are regulated by interleukin-4 and interleukin-10. Immunology 99, 402-410. <https://doi.org/10.1046/j.1365-2567.2000.00954.x>
17. Juarez, J., Bendall, L., Bradstock, K. (2001) Chemokines and their receptors as therapeutic targets: the role of the SDF-1/ CXCR4 axis. Curr. Pharm. Des. 10, 1245-1259. <https://doi.org/10.2174/1381612043452640>
18. Kramata, P., Votruba, I., Otová, B., Holý, A. (1996) Different inhibitory potencies of acyclic phosphonomethoxyalkyl nucleotide analogs toward DNA polymerases α, δ and ε. Mol. Pharmacol. 49, 1005-1011.
19. Michael, N. L., Louie, L. G., Rohrbaugh, A. L., Schultz, K. A., Dayhof, D. E., Wang, C. E., Sheppard, H. W. (1997) The role of CCR5 and CCR2 polymorphisms in HIV-1 transmission and disease progression. Nat. Med. 3, 1160-1162. <https://doi.org/10.1038/nm1097-1160>
20. Modi, W. S., Goedert, J. J., Strathdee, S., Buchbinder, S., Detels, R., Donfield, S., O’Brien, S. J., Winkler, C. (2003) MCP-1-MCP-3-Eotaxin gene cluster influences HIV-1 transmission. AIDS 17, 2357-2365. <https://doi.org/10.1097/00002030-200311070-00011>
21. Moore, J. P., Kitchen, S. G., Pugach, P., Zack, J. (2004) The CCR5 and CXCR4 co-receptors – central to understanding the transmission and pathogenesis of human immunodeficiency virus type 1 infection. AIDS Res. Hum. Retroviruses 20, 111-126. <https://doi.org/10.1089/088922204322749567>
22. Mueller, A., Strange, P. G. (2004) The chemokine receptor CCR5. Int. J. Biochem. Cell Biol. 36, 35-38. <https://doi.org/10.1016/S1357-2725(03)00172-9>
23. Nansen, A., Christensen, J. P., Andreasen, S. O., Bartholdy, C., Christensen, J. E. (2002) The role of CC chemokine receptor 5 in antiviral immunity. Blood 99, 1237-1245. <https://doi.org/10.1182/blood.V99.4.1237>
24. Patterson, B. K., Czerniewski, M., Andersson, J., Sullivan, Y., Su, F. (1999) Regulation of CCR5 and CXCR4 expression by type 1 and type 2 cytokines: CCR5 expression is downregulated by IL-10 in CD4-positive lymphocytes. Clin. Immunol. 91, 254-262. <https://doi.org/10.1006/clim.1999.4713>
25. Paxton, W. A., Kang, S., Koup, R. A. (1998) The HIV type 1 co-receptor CCR5 and its role in viral transmission and disease progression. AIDS Res. Hum. Retroviruses 14, S89-92.
26. Potměšil, P., Holý, A., Kmoníčková, E., Křížková, J., Zídek, Z. (2007) Acyclic nucleoside phosphonate antivirals activate gene expression of monocyte chemotactic protein 1 and 3. J. Biomed. Sci. 14, 59-66. <https://doi.org/10.1007/s11373-006-9116-4>
27. Princen, K., Hatse, S., Vermiere, K., Aquaro, S., De Clercq, E., Gerlach, L. O. (2004) Inhibition of human immunodeficiency virus replication by a dual CCR5/CXCR4 antagonist. J. Virol. 78, 12996-30006. <https://doi.org/10.1128/JVI.78.23.12996-13006.2004>
28. Sica, A., Saccani, A., Borsatti, A., Power, C. A., Wells, T., Luini, W., Polentarutti, N., Sozzani, S., Mantovani, A. (1997) Bacterial lipopolysaccharide rapidly inhibits expression of C-C chemokine receptors in human monocytes. J. Exp. Med. 185, 969-974. <https://doi.org/10.1084/jem.185.5.969>
29. Schols, D., Proost, P., Damme, J. V., De Clercq, E. (1997) RANTES and MCP-3 inhibit the replication of T-cell tropic human immunodeficiency virus type 1 strains (SF-2, MN and HE). J. Virol. 71, 7300-7304. <https://doi.org/10.1128/jvi.71.10.7300-7304.1997>
30. Takayama, T., Morellii, A. E., Onai, N., Hirao, M., Matsushima, K. (2001) Mammalian and viral IL-10 enhance C-C chemokine receptor 5 expression but downregulate CC chemokine receptor 7 expression by myeloid dendritic cells: impact on chemotactic responses and in vivo homing ability. J. Immunol. 166, 7136-7143. <https://doi.org/10.4049/jimmunol.166.12.7136>
31. Verani, A., Sironi, F., Siccardi, A. G., Lusso, P., Vercelli, D. (2002) Inhibition of CXCR4-tropic HIV-1 infection by lipopolysaccharide: evidence of different mechanisms in macrophages and T lymphocytes. J. Immunol. 168, 6388-6395. <https://doi.org/10.4049/jimmunol.168.12.6388>
32. Zídek, Z., Franková, D., Holý, A. (2001) Activation by 9-(R)- [2-(phosphonomethoxy)propyl]adenine of chemokine (RANTES, macrophage inflammatory protein-1α) and cytokine (tumor necrosis factor α, interleukin-10 [IL-10], IL-1β) production. Antimicrob. Agents Chemother. 45, 3381-3386. <https://doi.org/10.1128/AAC.45.12.3381-3386.2001>
33. Zídek, Z., Potměšil,P., Kmoníčková, E,. Holý, A. (2003) Immunobiological activity of N- [2(phosphonomethoxy) alkyl] derivatives of N6-substituted adenines, and 2,6-diaminopurines. Eur. J. Pharmacol. 475, 149-159. <https://doi.org/10.1016/S0014-2999(03)02110-1>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Archive