Fol. Biol. 2015, 61, 1-7
https://doi.org/10.14712/fb2015061010001
Influence of Acyclic Nucleoside Phosphonate Antivirals on Gene Expression of Chemokine Receptors CCR5 and CXCR4
References
1. 2001) Opposite effects of IL-10 on the ability of dendritic cells and macrophages to replicate primary CXCR4-dependent HIV-1 strains. J. Immunol. 166, 4244-4253.
< , P., Bakri, Y., Chomont, N., Hocini, H., Gabuzda, D., Haeffner-Cavaillon, N. (https://doi.org/10.4049/jimmunol.166.6.4244>
2. 1999) Chemokine receptors as HIV-1 co-receptors: roles in viral entry, tropism and disease. Annu Rev. Immunol. 17, 657-700.
< , E. A., Murphy, P. M., Farber, J. M. (https://doi.org/10.1146/annurev.immunol.17.1.657>
3. 2001) Tumor necrosis factor-α drives HIV-1 replication in U937 cell clones and upregulates CXCR4. Cytokine 13, 55-59.
< , P., Mantelli, B., Delfanti, F., Cota, M., Vallanti, G., de Filippi, C., Mengozzi, M., Vicenzi, E., Lazzarin, A., Poli, G. (https://doi.org/10.1006/cyto.2000.0798>
4. 1999) CCR5 binds multiple CC-chemokines, MCP-3 acts as a natural antagonist. Blood 94, 1899-1905.
< , C., Migeotte, I., Lee, B., Vakili, J., Doranz, B. J., Govaerts, C., Vassart, G., Doms, R. W., Parmentier, M. (https://doi.org/10.1182/blood.V94.6.1899>
5. 1995) Identification of RANTES, macrophage inflammatory protein MIP-1 α and MIP-1 β as the major HIV suppressive factors produced by CD8+ T cells. Science 270, 1811-1815.
< , F., DeVico, A. L., Garzino-Demo, A., Arya S. K., Gallo, R. C., Lusso, P. (https://doi.org/10.1126/science.270.5243.1811>
6. 2003) Expression of chemokines and their receptors in human and simian astrocytes: evidence for central role of TNF-α and IFN-γ in CXRC4 and CCR5 modulation. Glia 41, 354-370.
< , J., Guillemin, G., Boussin, F., Mognetti, B., Gigout, L., Cheret, A. (https://doi.org/10.1002/glia.10181>
7. 1996) Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Science 273, 1856-1862.
< , M., Crington, M., Winkler, C., Hutlley, G. A., Smith, M. W., Allikmets, R., Goedert, J. J., Buchbinder, S. P., Vittinghoff, E., Gomperts,E., Donfield, S., Vlahov, D., Kaslow, R., Saah, A., Rinaldo, C., Detels, R., O’Brien, S.J. (https://doi.org/10.1126/science.273.5283.1856>
8. 2004) HIV-chemotherapy and prophylaxis: new drugs, leads and approaches. Int. J. Biochem. Cell Biol. 36, 1800-1822.
< , E. (https://doi.org/10.1016/j.biocel.2004.02.015>
9. 2013) Antivirals: past, present and future. Biochem. Pharmacol. 85, 727-744.
< , E. (https://doi.org/10.1016/j.bcp.2012.12.011>
10. 2008) Current and future antiretroviral treatment options in paediatric HIV infection. Clin. Drug Investig. 28, 375-397.
< , C., Morelli, E., Fregonese, F., Rampon, O., Penqazzato, M., De Rossi, A., D’Elia, R. (https://doi.org/10.2165/00044011-200828060-00005>
11. 1990) Acyclic nucleotide analogues: synthesis, antiviral activity and inhibitory effects on some cellular and virusencoded enzymes in vitro. Antiviral Res. 13, 295-311.
< , A., Votruba, I., Merta, A., Černý, J., Veselý, J., Vlach, J., Šedivá, K., Rosenberg , I., Otmar, M., Hrebabecký, H. (https://doi.org/10.1016/0166-3542(90)90014-X>
12. 2001) Antiviral agents in 2000 – and then what next? Cas. Lek. Cesk. 140, 583-591. (in Czech)
, A. (
13. 2001) Synthesis and cytostatic activity of N-[2-(phosphonomethoxy) alkyl] derivatives of N6-substituted adenines, 2,6-diaminopurines and related compounds. Collect. Czech. Chem. Commun. 66, 1545-1592.
< , A., Votruba, I., Tlouštová, E., Masojídková, M. (https://doi.org/10.1135/cccc20011545>
14. 2000) TNF-α induced secretion of C-C chemokines modulates C-C chemokine receptor 5 expression on peripheral blood lymphocytes. J. Immunol. 164, 6180-6187.
< , F., Scala, G., Leonardo, M. J. (https://doi.org/10.4049/jimmunol.164.12.6180>
15. 2003) Therapeutic applications in the chemokine superfamily. Curr. Opin. Chem. Biol. 7, 457-460.
< , P., Zlotnik, A. (https://doi.org/10.1016/S1367-5931(03)00086-3>
16. 2000) CXC chemokine receptor 4 expression and stromal cell-derived factor 1 α-induced chemotaxis in CD4+ T lymphocytes are regulated by interleukin-4 and interleukin-10. Immunology 99, 402-410.
< , T., Quan, S., Jacobi, H. H., Madsen, H. O., Glue, C., Skov, P. C., Malling, H. J., Poulsen, L. K. (https://doi.org/10.1046/j.1365-2567.2000.00954.x>
17. 2001) Chemokines and their receptors as therapeutic targets: the role of the SDF-1/ CXCR4 axis. Curr. Pharm. Des. 10, 1245-1259.
< , J., Bendall, L., Bradstock, K. (https://doi.org/10.2174/1381612043452640>
18. 1996) Different inhibitory potencies of acyclic phosphonomethoxyalkyl nucleotide analogs toward DNA polymerases α, δ and ε. Mol. Pharmacol. 49, 1005-1011.
, P., Votruba, I., Otová, B., Holý, A. (
19. 1997) The role of CCR5 and CCR2 polymorphisms in HIV-1 transmission and disease progression. Nat. Med. 3, 1160-1162.
< , N. L., Louie, L. G., Rohrbaugh, A. L., Schultz, K. A., Dayhof, D. E., Wang, C. E., Sheppard, H. W. (https://doi.org/10.1038/nm1097-1160>
20. 2003) MCP-1-MCP-3-Eotaxin gene cluster influences HIV-1 transmission. AIDS 17, 2357-2365.
< , W. S., Goedert, J. J., Strathdee, S., Buchbinder, S., Detels, R., Donfield, S., O’Brien, S. J., Winkler, C. (https://doi.org/10.1097/00002030-200311070-00011>
21. 2004) The CCR5 and CXCR4 co-receptors – central to understanding the transmission and pathogenesis of human immunodeficiency virus type 1 infection. AIDS Res. Hum. Retroviruses 20, 111-126.
< , J. P., Kitchen, S. G., Pugach, P., Zack, J. (https://doi.org/10.1089/088922204322749567>
22. 2004) The chemokine receptor CCR5. Int. J. Biochem. Cell Biol. 36, 35-38.
< , A., Strange, P. G. (https://doi.org/10.1016/S1357-2725(03)00172-9>
23. 2002) The role of CC chemokine receptor 5 in antiviral immunity. Blood 99, 1237-1245.
< , A., Christensen, J. P., Andreasen, S. O., Bartholdy, C., Christensen, J. E. (https://doi.org/10.1182/blood.V99.4.1237>
24. 1999) Regulation of CCR5 and CXCR4 expression by type 1 and type 2 cytokines: CCR5 expression is downregulated by IL-10 in CD4-positive lymphocytes. Clin. Immunol. 91, 254-262.
< , B. K., Czerniewski, M., Andersson, J., Sullivan, Y., Su, F. (https://doi.org/10.1006/clim.1999.4713>
25. 1998) The HIV type 1 co-receptor CCR5 and its role in viral transmission and disease progression. AIDS Res. Hum. Retroviruses 14, S89-92.
, W. A., Kang, S., Koup, R. A. (
26. 2007) Acyclic nucleoside phosphonate antivirals activate gene expression of monocyte chemotactic protein 1 and 3. J. Biomed. Sci. 14, 59-66.
< , P., Holý, A., Kmoníčková, E., Křížková, J., Zídek, Z. (https://doi.org/10.1007/s11373-006-9116-4>
27. 2004) Inhibition of human immunodeficiency virus replication by a dual CCR5/CXCR4 antagonist. J. Virol. 78, 12996-30006.
< , K., Hatse, S., Vermiere, K., Aquaro, S., De Clercq, E., Gerlach, L. O. (https://doi.org/10.1128/JVI.78.23.12996-13006.2004>
28. 1997) Bacterial lipopolysaccharide rapidly inhibits expression of C-C chemokine receptors in human monocytes. J. Exp. Med. 185, 969-974.
< , A., Saccani, A., Borsatti, A., Power, C. A., Wells, T., Luini, W., Polentarutti, N., Sozzani, S., Mantovani, A. (https://doi.org/10.1084/jem.185.5.969>
29. 1997) RANTES and MCP-3 inhibit the replication of T-cell tropic human immunodeficiency virus type 1 strains (SF-2, MN and HE). J. Virol. 71, 7300-7304.
< , D., Proost, P., Damme, J. V., De Clercq, E. (https://doi.org/10.1128/jvi.71.10.7300-7304.1997>
30. 2001) Mammalian and viral IL-10 enhance C-C chemokine receptor 5 expression but downregulate CC chemokine receptor 7 expression by myeloid dendritic cells: impact on chemotactic responses and in vivo homing ability. J. Immunol. 166, 7136-7143.
< , T., Morellii, A. E., Onai, N., Hirao, M., Matsushima, K. (https://doi.org/10.4049/jimmunol.166.12.7136>
31. 2002) Inhibition of CXCR4-tropic HIV-1 infection by lipopolysaccharide: evidence of different mechanisms in macrophages and T lymphocytes. J. Immunol. 168, 6388-6395.
< , A., Sironi, F., Siccardi, A. G., Lusso, P., Vercelli, D. (https://doi.org/10.4049/jimmunol.168.12.6388>
32. 2001) Activation by 9-(R)- [2-(phosphonomethoxy)propyl]adenine of chemokine (RANTES, macrophage inflammatory protein-1α) and cytokine (tumor necrosis factor α, interleukin-10 [IL-10], IL-1β) production. Antimicrob. Agents Chemother. 45, 3381-3386.
< , Z., Franková, D., Holý, A. (https://doi.org/10.1128/AAC.45.12.3381-3386.2001>
33. 2003) Immunobiological activity of N- [2(phosphonomethoxy) alkyl] derivatives of N6-substituted adenines, and 2,6-diaminopurines. Eur. J. Pharmacol. 475, 149-159.
< , Z., Potměšil,P., Kmoníčková, E,. Holý, A. (https://doi.org/10.1016/S0014-2999(03)02110-1>