Folia Biologica
Journal of Cellular and Molecular Biology, Charles University 

Crossref logo

Fol. Biol. 2015, 61, 33-42

https://doi.org/10.14712/fb2015061010033

Manufactured Silver Nanoparticles of Different Sizes Induced DNA Strand Breaks and Oxidative DNA Damage in Hepatoma and Leukaemia Cells and in Dermal and Pulmonary Fibroblasts

A. Ávalos, A. I. Haza, Paloma Morales

Departamento de Nutrición, Bromatología y Tecnología de los Alimentos. Facultad de Veterinaria, Universidad Complutense de Madrid, Spain

Received July 2014
Accepted November 2014

References

1. Ahamed, M., Karns, M., Goodson, M., Rowe, J., Hussain, S. M., Schlager, J. J., Hong, Y. (2008) DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol. Appl. Pharmacol. 233, 404-410. <https://doi.org/10.1016/j.taap.2008.09.015>
2. Ahamed, M., Posgai, R., Gorey, T. J., Nielsen, M., Hussain, S. M., Rowe, J. J. (2010) Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster. Toxicol. Appl. Pharmacol. 242, 263-269. <https://doi.org/10.1016/j.taap.2009.10.016>
3. Arora, S., Jain, J., Rajwade, J. M., Paknikar, K. M. (2008) Cellular responses induced by silver nanoparticles: in vitro studies. Toxicol. Lett. 179, 93-100. <https://doi.org/10.1016/j.toxlet.2008.04.009>
4. Asharani, P. V., Grace, L. K. M., Hande, M. P., Aliyaveettil, S. (2009) Cytotoxicity and genotoxcity of silver nanoparticles in human cells. ACS Nano 3, 279-290. <https://doi.org/10.1021/nn800596w>
5. Ávalos, A., Haza, A. I., Mateo, D., Morales, P. (2014a) Cytotoxicity and ROS production of manufactured silver nanoparticles of different sizes in hepatoma and leukemia cells. J. Appl. Toxicol. 34, 413-423. <https://doi.org/10.1002/jat.2957>
6. Ávalos, A., Haza, A. I., Mateo, D., Morales, P. (2014b) Interactions of manufactured silver nanoparticles of different sizes with normal human dermal fibroblasts. Int. Wound J. 25. <https://doi.org/10.1038/nature08195>
7. Boiteux, S. (1993) Properties and biological functions of the NTH and FPG proteins of Escherichia coli: two DNA glycosylases that repair oxidative damage in DNA. J. Photochem. Photobiol. B Biol. 19, 87-96. <https://doi.org/10.1016/1011-1344(93)87101-R>
8. Cha, K., Hong, H. W., Choi, Y. G., Lee, M. J., Park, J. H., Chae, H. K., Ryu, G., Myung, H. (2008) Comparison of acute responses of mice livers to short-term exposure to nano-sized or micro-sized silver particles. Biotechnol. Lett. 30, 1893-1899. <https://doi.org/10.1007/s10529-008-9786-2>
9. Chen, X., Schluesener, H. J. (2008) Nanosilver: a nanoproduct in medical application. Toxicol. Lett. 176, 1-12. <https://doi.org/10.1016/j.toxlet.2007.10.004>
10. Collins, A. R., Duthie, S. J., Dobson, V. L. (1993) Direct enzymic detection of endogenous oxidative base damage in human lymphocyte DNA. Carcinogenesis 14, 1733-1735. <https://doi.org/10.1093/carcin/14.9.1733>
11. Colvin, V. L. (2003) The potential environmental impact of engineered nanomaterials. Nat. Biotechnol. 21, 1166-1170. <https://doi.org/10.1038/nbt875>
12. Cunningham, M. J. (2007) Gene-cellular interactions of nanomaterials: genotoxicity to genomics. In: Nanotoxicology: Characterization, Dosing and Health Effects, eds. Monteiro-Riviere, N. A., Lang Tran, C., pp. 173-196, Informa Healthcare, New York. <https://doi.org/10.1016/j.cyto.2011.04.012>
13. Doetsch, P. W., Henner, W. D., Cunningham, R. P., Toney, J. H., Helland, D. E. (1987) A highly conserved endonuclease activity present in Escherichia coli, bovine, and human cells recognizes oxidative DNA damage at sites of pyrimidines. Mol. Cell Biol. 7, 26-32.
14. European Commission (2012) Nanomaterials: Commission proposes case by case approach to assessment. MEMO, 12, 732.
15. Flower, N. A., Brabu, B., Revathy, M., Gopalakrishnan, C., Raja, S. V. K., Murugan, S. S., Kumaravel, T. S. (2012) Characterization of synthesized silver nanoparticles and assessment of its genotoxicity potentials using the alkaline comet assay. Mutat. Res. 742, 61-65. <https://doi.org/10.1016/j.mrgentox.2011.12.003>
16. Foldbjerg, R., Olesen, P., Hougaard, M., Dang, D. A., Hoffmann, H. J., Autrup, H. (2009) PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes. Toxicol. Lett. 190, 156-162. <https://doi.org/10.1016/j.toxlet.2009.07.009>
17. Foldbjerg, R., Dang, D. A., Autrup, H. (2011) Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch. Toxicol. 85, 743-750. <https://doi.org/10.1007/s00204-010-0545-5>
18. Foldbjerg, R., Autrup, H. (2013) Mechanisms of silver nanoparticle toxicity. Arch. Bas. App. Med. 1, 5-15.
19. Gliga, A. R., Skoglund, S., Wallinder, I. O., Fadeel, B., Karlsson, H. (2014) Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part. Fibre Toxicol. 11, 11-28. <https://doi.org/10.1186/1743-8977-11-11>
20. Godard, T., Deslandes, E., Lebailly, P., Vigreux, C., Poulain, L., Sichel, F., Poul, J. M., Gauduchon, P. (1999) Comet assay and DNA flow cytometry analysis of staurosporine-induced apoptosis. Cytometry 36, 117-122. <https://doi.org/10.1002/(SICI)1097-0320(19990601)36:2<117::AID-CYTO5>3.0.CO;2-#>
21. Hackenberg, S., Scherzed, A., Kessler, M., Hummel, S., Technau, A., Froelich, K., Ginzkey, C., Koehler, C., Hagen, R., Kleinsasser, N. (2011) Silver nanoparticles: evaluation of DNA damage, toxicity and functional impairment in human mesenchymal stem cells. Toxicol. Lett. 201, 27-33. <https://doi.org/10.1016/j.toxlet.2010.12.001>
22. He, W., Zhou, Y. T., Wamer, W. G., Boudreau, M. D., Yi, J. J. (2012) Mechanisms of the pH dependent generation of hydroxyl radicals and oxygen induced by Ag nanoparticles. Biomaterials 33, 7547-7555. <https://doi.org/10.1016/j.biomaterials.2012.06.076>
23. Hsin, Y. H., Chen, C. F., Huang, S., Shih, T. S., Lai, P. S., Chueh, P. J. (2008) The apoptotic effect of nanosilver is mediated by ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol. Lett. 179, 130-139. <https://doi.org/10.1016/j.toxlet.2008.04.015>
24. Johnston, H. J., Hutchison, G., Christensen, F. M., Peters, S., Hankin, S., Stone, V. (2010) A review of the in vivo and in vitro toxicity of silver and gold particulates: particle attributes and biological mechanisms responsible for the observed toxicity. Crit. Rev. Toxicol. 40, 328-346. <https://doi.org/10.3109/10408440903453074>
25. Jovanovic, S. V., Simic, M. G. (1986) One-electron redox potentials of purines and pyrimidines. J. Phys. Chem. 90, 974-978. <https://doi.org/10.1021/j100277a053>
26. Kawata, K., Osawa, M., Okabe, S. (2009) In vitro toxicity of silver nanoparticles at noncytotoxic doses to HepG2 human hepatoma cells. Environ. Sci. Technol. 43, 6046-6051. <https://doi.org/10.1021/es900754q>
27. Karlsson, H. L. (2010) The comet assay in nanotoxicology research. Anal. Bioanal. Chem. 398, 651-666. <https://doi.org/10.1007/s00216-010-3977-0>
28. Kim, H. R., Kim, M. J., Lee, S. Y., Oh, S. M., Chung, K. H. (2011) Genotoxic effects of silver nanoparticles stimulated by oxidative stress in human normal bronchial epithelial (BEAS-2B) cells. Mutat. Res. 726, 129-135. <https://doi.org/10.1016/j.mrgentox.2011.08.008>
29. Kreuter, J., Gelperina, S. (2008) Use of nanoparticles for cerebral cancer. Tumori 94, 271-277. <https://doi.org/10.1177/030089160809400220>
30. Landsiedel, R., Kapp, M. D., Schulz, M., Wiench, K., Oesch, F. (2009) Genotoxicity investigations on nanomaterials: methods, preparation and characterization of test material, potential artifacts and limitation – many questions, some answers. Mutat. Res. 681, 241-258. <https://doi.org/10.1016/j.mrrev.2008.10.002>
31. Li, Y., Chen, D. H., Yan, J., Chen, Y., Mittelstaedt, R. A., Zhang, Y., Biris, A. S., Heflich, R. H., Chen, T. (2012) Genotoxicity of silver nanoparticles evaluated using the Ames test and in vitro micronucleus assay. Mutat. Res. 745, 4-10. <https://doi.org/10.1016/j.mrgentox.2011.11.010>
32. Lima, R., Seabra, A. B., Durán, N. (2012) Silver nanoparticles: a brief review of cytotoxicity and genotoxicity of chemically and biogenically synthesized nanoparticles. J. Appl. Toxicol. 32, 867-879. <https://doi.org/10.1002/jat.2780>
33. Liu, J., Hurt, R. H. (2010) Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ. Sci. Technol. 44, 2169-2175. <https://doi.org/10.1021/es9035557>
34. Maurer-Jones, M. A., Lin, Y. S., Haynes, C. L. (2010) Functional assessment of metal oxide nanoparticle toxicity in immune cells. ACS Nano 4, 3363-3373. <https://doi.org/10.1021/nn9018834>
35. Maynard, A. D., Kuempel, E. D. (2005) Airbone nanostructured particles and occupational health. J. Nanopart. Res. 7, 587-614. <https://doi.org/10.1007/s11051-005-6770-9>
36. Mei, N., Zhang, Y., Chen, Y., Guo, X., Ding, W., Ali, S. F., Biris, A. S., Rice, P., Moore, M. N., Chen, T. (2012) Silver nanoparticle-induced mutations and oxidative stress in mouse lymphoma cells. Environ. Mol. Mutagen. 53, 409-419. <https://doi.org/10.1002/em.21698>
37. Mukherjee, S. G., O’Claonadh, N., Casey, A., Chambers, G. (2012) Comparative in vitro cytotoxicity study of silver nanoparticle on two mammalian cells lines. Toxicol. In Vitro 26, 238-251. <https://doi.org/10.1016/j.tiv.2011.12.004>
38. Nel, A., Xia, T., Mädler, L., Li, N. (2006) Toxic potential of materials at the nanolevel. Science 311, 622-627. <https://doi.org/10.1126/science.1114397>
39. Nymark, P., Catalan, J., Suhonen, S., Jarventaus, H., Birkedal, R., Clausen, P. A., Jensen, K. A., Vippola, M., Savolainen, K., Norppa, H. (2013) Genotoxicity of polyvinylpyrrolidone- coated silver nanoparticles in BEAS 2B cells. Toxicology 313, 38-48. <https://doi.org/10.1016/j.tox.2012.09.014>
40. Oberdorster, G., Oberdorster, E., Oberdorster, J. (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 113, 823-839. <https://doi.org/10.1289/ehp.7339>
41. Olive, P. L., Wlodek, D., Durand, R. E., Banath, J. P. (1992) Factors influencing DNA migration from individual cells subjected to gel electrophoresis. Exp. Cell. Res. 198, 259-267. <https://doi.org/10.1016/0014-4827(92)90378-L>
42. Olive, P. L., Frazer, G., Banáth, J. P. (1993) Radiation-induced apoptosis measured in TK6 human B lymphoblast cells using the comet assay. Radiat. Res. 136, 130-136. <https://doi.org/10.2307/3578650>
43. Panda, K. K., Achary, V. M., Krishnaveni, R., Padhi, B. K., Sarangi, S. N., Sahu, S. N., Panda, B. B. (2011) In vitro biosynthesis and genotoxicity bioassay of silver nanoparticles using plants. Toxicol. In Vitro 25, 1097-1105. <https://doi.org/10.1016/j.tiv.2011.03.008>
44. Park, M. V. D. Z., Neigh, A. M., Vermeulen, J. P., de la Fonteyne, L. J .J., Verharen, H. W., Briedé, J. J., van Loveren, H., de Jong, W. H. (2011) The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials 32, 9810-9817. <https://doi.org/10.1016/j.biomaterials.2011.08.085>
45. Su, J., Zhang, J., Liu, L., Huang, Y., Mason, R. P. (2008) Exploring feasibility of multicolored CdTe quantum dots for in vitro and in vivo fluorescent imaging. J. Nanosci. Nanotechnol. 8, 1174-1177. <https://doi.org/10.1166/jnn.2008.18167>
46. Tan, W. B., Jiang, S., Zhang, Y. (2007) Quantum-dot based nanoparticles for targeted silencing of HER2/neu gene via RNA interference. Biomaterials 28, 1565-1571. <https://doi.org/10.1016/j.biomaterials.2006.11.018>
47. Wallace, W. E., Keane, M. J., Murray, D. K., Chisholm, W. P., Maynard, A. D., Ong, T. M. (2007) Phospholipid lung surfactant and nanoparticle surface toxicity: lessons from diesel soots and silicate dusts. J. Nanopart. Res. 9, 23-38. <https://doi.org/10.1007/s11051-006-9159-5>
48. Wijnhoven, S. W. P., Peijnenburg, W. J. G. M., Herberts, C. A., Hagens, W. I., Oomen, A. G., Heugens, E. H. W., Roszek, B., Bisschops, J., Gosens, I., Van De Meent, D., Dekkers, S., De Jong, W. H., van Zijverden, M., Sips, A. N. J. A. M., Geertsma, R. E. (2009) Nano silver – a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 3, 109-138. <https://doi.org/10.1080/17435390902725914>
49. Xia, T., Kovochich, M., Brant, J., Hotze, M., Sempf, J., Oberley, T., Sioutas, C., Yeh, J. I., Wiesner, M. R., Nel, A. E. (2006) Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett. 6, 1794-1807. <https://doi.org/10.1021/nl061025k>
50. Yoon, K. Y., Hoon, B. J., Park, J. H., Hwang, J. (2007) Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci. Total Environ. 373, 572-575. <https://doi.org/10.1016/j.scitotenv.2006.11.007>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Submissions

Archive