Fol. Biol. 2015, 61, 74-80

https://doi.org/10.14712/fb2015061020074

Differential Protein Expression between Type 1 Diabetic Cataract and Age-Related Cataract Patients

Y. Qianqian1, Yao Yong1, C. Zhaodong1, T. Yonghui2, S. Jun1, H. Yuzheng2

1Department of Ophthalmology, Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
2The Key Lab of Technology on Parasitic Diseases Prevent and Control, Ministry of Health; Jiangsu Institute of Parasitic Diseases, Wuxi, China

Received February 2014
Accepted March 2015

References

1. Afshari, N. (2011) Cataract surgery: from couching to femtosecond, look how far we have come! Curr. Opin. Ophthalmol. 22, 1. <https://doi.org/10.1097/ICU.0b013e3283416730>
2. Benedek, G. (1983) Why the eye lens is transparent. Nature 302, 383-384. <https://doi.org/10.1038/302383a0>
3. Bloemendal, H. (1981) The lens proteins. In: Molecular and Cellular Biology of the Eye Lens, pp. 1-14, John Wiley & Sons, New York.
4. Bloemendal, H., De Jong, W., Jaenicke, R., Lubsen, N. H., Slingsby, C., Tardieu, A. (2004) Ageing and vision: structure, stability and function of lens crystallins. Prog. Biophys. Mol. Biol. 86, 407-485. <https://doi.org/10.1016/j.pbiomolbio.2003.11.012>
5. Chiou, S. H., Wu, S. H. (1999) Evaluation of commonly used electrophoretic methods for the analysis of proteins and peptides and their application to biotechnology. Anal. Chim. Acta 383, 47-60. <https://doi.org/10.1016/S0003-2670(98)00487-5>
6. Chiou, S. H., Huang, C. H., Lee, I. L., Wang, Y. T., Liu, N. Y., Tsay, Y. G., Chen, Y. J. (2012) Identification of in vivo phosphorylation sites of lens proteins from porcine eye lenses by a gel-free phosphoproteomics approach. Mol. Vis. 16, 294-302.
7. Clark, A. R., Lubsen, N. H., Slingsby, C. (2012) sHSP in the eye lens: crystallin mutations, cataract and proteostasis. Int. J. Biochem. Cell Biol. 44, 1687-1697. <https://doi.org/10.1016/j.biocel.2012.02.015>
8. Datiles, M. B., Schumer, D. J., Zigler J. S., Jr., Russell, P., Anderson, L., Garland, D. (1992) Two-dimensional gel electrophoretic analysis of human lens proteins. Curr. Eye Res. 11, 669-677. <https://doi.org/10.3109/02713689209000740>
9. David, L. L., Azuma, M., Shearer, T. R. (1994) Cataract and the acceleration of calpain-induced β-crystallin insolubilization occurring during normal maturation of rat lens. Invest. Ophthalmol. Vis. Sci. 35, 785-793.
10. Fountoulakis, M., Takacs, B. (2001) Effect of strong detergents and chaotropes on the detection of proteins in twodimensional gels. Electrophoresis 22, 1593-1602. <https://doi.org/10.1002/1522-2683(200105)22:9<1593::AID-ELPS1593>3.0.CO;2-6>
11. Harding, J. J. (1991) Aspirin and cataract. Arch. Ophthalmol. 109, 1344-1345. <https://doi.org/10.1001/archopht.1991.01080100024010>
12. Harms, M. J., Wilmarth, P. A., Kapfer, D. M., Steel, E. A., David, L. L., Bächinger, H. P., Lampi, K. J. (2004) Laser light scattering evidence for an altered association of βB1-crystallin deamidated in the connecting peptide. Protein Sci. 13, 678-686. <https://doi.org/10.1110/ps.03427504>
13. Hermans, M. P., Ahn, S. A., Rousseau, M. F. (2011) Statin therapy and cataract in type 2 diabetes. Diabetes Metab. 37, 139-143. <https://doi.org/10.1016/j.diabet.2010.09.005>
14. Horwitz, J. (2003) Alpha-crystallin. Exp. Eye Res. 76, 145-153. <https://doi.org/10.1016/S0014-4835(02)00278-6>
15. Humphery-Smith, I., Cordwell, S. J., Blackstock, W. P. (1997) Proteome research: complementarity and limitations with respect to the RNA and DNA worlds. Electrophoresis 18, 1217-1242. <https://doi.org/10.1002/elps.1150180804>
16. Kamei, A., Takamura, S., Nagai, M., Takeuchi, N. (2004) Phosphoproteome analysis of hereditary cataractous rat lens α-crystallin. Biol. Pharm. Bull. 27, 1923-1931. <https://doi.org/10.1248/bpb.27.1923>
17. Klose, J. (1999) Large-gel 2-D electrophoresis. Methods Mol. Biol. 112, 147-172.
18. Kumar, P. A., Reddy, P. Y., Srinivas, P. N., Reddy, G. B. (2009) Delay of diabetic cataract in rats by the antiglycating potential of cumin through modulation of α-crystallin chaperone activity. J. Nutr. Biochem. 20, 553-562. <https://doi.org/10.1016/j.jnutbio.2008.05.015>
19. Lampi, K. J., Ma, Z., Hanson, S. R., Azuma, M., Shih, M., Shearer, T. R., Smith, D.L., Smith, J. B., David, L. L. (1998) Age-related changes in human lens crystallins identified by two-dimensional electrophoresis and mass spectrometry. Exp. Eye Res. 67, 31-43. <https://doi.org/10.1006/exer.1998.0481>
20. Li, Y. B., Wang, R., Wu, H. L., Li, Y. H., Zhong, L. J., Yu, H. M., Li, X. J. (2008) Serum amyloid A mediates the inhibitory effect of Ganoderma lucidum polysaccharides on tumor cell adhesion to endothelial cells. Oncol. Rep. 20, 549-556.
21. Mehlen, P., Kretz-Remy, C., Préville, X., Arrigo, A. P. (1996) Human hsp27, Drosophila hsp27 and human αB-crystallin expression-mediated increase in glutathione is essential for the protective activity of these proteins against TNFα-induced cell death. EMBO J. 15, 2695-2706. <https://doi.org/10.1002/j.1460-2075.1996.tb00630.x>
22. Neal, R., Aykin-Burns, N., Ercal, N., Zigler, J. S., Jr. (2005) Pb2+ exposure alters the lens αA-crystallin protein profile in vivo and induces cataract formation in lens organ culture. Toxicology 212, 1-9. <https://doi.org/10.1016/j.tox.2005.03.015>
23. Obrosova, I. G., Chung, S. S., Kador, P. F. (2010) Diabetic cataracts: mechanisms and management. Diabetes Metab. Res. Rev. 26, 172-180. <https://doi.org/10.1002/dmrr.1075>
24. Pollreisz, A., Schmidt-Erfurth, U. (2010) Diabetic cataract – pathogenesis, epidemiology and treatment. J. Ophthalmol. 2010, 608751.
25. Reddy, G. B., Das, K. P., Petrash, J. M., Surewicz, W. K. (2000) Temperature-dependent chaperone activity and structural properties of human αA- and αB-crystallins. J. Biol. Chem. 275, 4565-4570. <https://doi.org/10.1074/jbc.275.7.4565>
26. Saxena, P., Saxena, A. K., Cui, X. L., Obrenovich, M., Gudipaty, K., Monnier, V. M. (2000) Transition metal-catalyzed oxidation of ascorbate in human cataract extracts: possible role of advanced glycation end products. Invest. Ophthalmol. Vis. Sci. 41, 1473-1481.
27. Shah, A. S., Chen, S. H. (2010) Cataract surgery and diabetes. Curr. Opin. Ophthalmol. 21, 4-9. <https://doi.org/10.1097/ICU.0b013e328333e9c1>
28. Shamsi, F. A., Sharkey, E., Creighton, D. (2000) Maillard reactions in lens proteins: methylglyoxal-mediated modifications in the rat lens. Exp. Eye Res. 70, 369-380. <https://doi.org/10.1006/exer.1999.0800>
29. Shih, M., Lampi, K. J., Shearer, T. R., David, L. L. (1998) Cleavage of β-crystallins during maturation of bovine lens. Mol. Vis. 4, 4.
30. Wang, K. J., Wang, S., Cao, N. Q., Yan, Y. B., Zhu, S. Q. (2011) A novel mutation in CRYBB1 associated with congenital cataract-microcornea syndrome: the p.Ser129Arg mutation destabilizes the βB1/βA3-crystallin heteromer but not the βB1-crystallin homomer. Hum. Mutat. 32, E2050-2060. <https://doi.org/10.1002/humu.21436>
31. Werten, P. J., Vos, E., De Jong, W.W. (1999) Truncation of βA3/A1-crystallin during aging of the bovine lens; possible implications for lens optical quality. Exp. Eye Res. 68, 99-103. <https://doi.org/10.1006/exer.1998.0584>
32. Wolters, D. A., Washburn, M. P., Yates, J. R., 3rd. (2001) An automated multidimensional protein identification technology for shotgun proteomics. Anal. Chem. 73, 5683-5690. <https://doi.org/10.1021/ac010617e>
33. Wyttenbach, A., Sauvageot, O., Carmichael, J., Diaz-Latoud, C., Arrigo, A. P., Rubinsztein, D. C. (2002) Heat shock protein 27 prevents cellular polyglutamine toxicity and suppresses the increase of reactive oxygen species caused by huntingtin. Hum. Mol. Genet. 11, 1137-1151. <https://doi.org/10.1093/hmg/11.9.1137>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Archive