Fol. Biol. 2015, 61, 49-59
https://doi.org/10.14712/fb2015061020049
Ellagic Acid-Changed Epigenome of Ribosomal Genes and Condensed RPA194-Positive Regions of Nucleoli in Tumour Cells
References
1. 2005) Analysis of UV-induced damage and repair in young and senescent human dermal fibroblasts using the comet assay. Mech. Ageing Dev. 126, 664-672.
< , E. A., Oshin, M., Hutchison, C. J., Kill, I. R. (https://doi.org/10.1016/j.mad.2004.12.002>
2. 2005) Nucleolar proteome dynamics. Nature 433, 77-83.
< , J. S., Lam, Y. W., Leung, A. K., Ong, S. E., Lyon, C. E., Lamond, A. I., Mann, M. (https://doi.org/10.1038/nature03207>
3. 2010) Dietary compound ellagic acid alleviates skin wrinkle and inflammation induced by UV-B irradiation. Exp. Dermatol. 19, e182-190.
< , J. Y., Choi, J. S., Kang, S. W., Lee, Y. J., Park, J., Kang, Y. H. (https://doi.org/10.1111/j.1600-0625.2009.01044.x>
4. 2000) The influence of the cell cycle, differentiation and irradiation on the nuclear location of the abl, bcr and c-myc genes in human leukemic cells. Leuk. Res. 24, 233-241.
< , E., Kozubek, S., Kozubek, M., Jirsová, P., Lukášová, E., Skalníková, M., Buchníčková, K. (https://doi.org/10.1016/S0145-2126(99)00174-5>
5. 2001) Molecular interactions between poly(ADP-ribose) polymerase (PARP I) and topoisomerase I (Topo I): identification of topology of binding. FEBS Lett. 506, 239-242.
< , P. I., Chen, H. J., Kenesi, E., Kenessey, I., Buki, K. G., Kirsten, E., Hakam, A., Hwang, J. I., Kun, E. (https://doi.org/10.1016/S0014-5793(01)02919-2>
6. 2007) The multifunctional nucleolus. Nat. Rev. Mol. Cell Biol. 8, 574-585.
< , F. M., van Koningsbruggen, S., Navascues, J., Lamond, A. I. (https://doi.org/10.1038/nrm2184>
7. 2010) The nucleolus under stress. Mol. Cell 40, 216-227.
< , S., Westman, B. J., Hutten, S., Boisvert, F. M., Lamond, A. I. (https://doi.org/10.1016/j.molcel.2010.09.024>
8. 2008) Nucleolin is required for an efficient herpes simplex virus type 1 infection. J. Virol. 82, 4762-4773.
< , A., Ugrinova, I., Epstein, A. L., Bouvet, P., Diaz, J. J., Greco, A. (https://doi.org/10.1128/JVI.00077-08>
9. 2012) Identification of small-molecule enhancers of arginine methylation catalyzed by coactivator- associated arginine methyltransferase 1. J. Med. Chem. 55, 9875-9890.
< , S., Spannhoff, A., Milite, C., Dal Piaz, F., Cheng, D., Tosco, A., Viviano, M, Yamani, A., Cianciulli, A., Sala, M., Cura, V., Cavarelli, J., Novellino, E., Mai, A., Bedford, M. T., Sbardella, G. (https://doi.org/10.1021/jm301097p>
10. 2005) Condensed mitotic chromatin is accessible to transcription factors and chromatin structural proteins. J. Cell Biol. 168, 41-54.
< , D., Dundr, M., Wang, C., Leung, A., Lamond, A., Misteli, T., Huang, S. (https://doi.org/10.1083/jcb.200407182>
11. 2002) Stressdependent nucleolin mobilization mediated by p53-nucleolin complex formation. Mol. Cell Biol. 22, 6014-6022.
< , Y., Dimitrova, D. D., Borowiec, J. A. (https://doi.org/10.1128/MCB.22.16.6014-6022.2002>
12. 2000) The AgNORs. Micron 31, 117-120.
< , M. (https://doi.org/10.1016/S0968-4328(99)00067-0>
13. 2006) Changes in nucleolar morphology and proteins during infection with the coronavirus infectious bronchitis virus. Cell. Microbiol. 8, 1147-1157.
< , B. K., You, J. H., Reed, M. L., Emmett, S. R., Brooks, G., Hiscox, J. A. (https://doi.org/10.1111/j.1462-5822.2006.00698.x>
14. 1988) A major nucleolar protein, nucleolin, induces chromatin decondensation by binding to histone H1. Eur. J. Biochem. 175, 525-530.
< , M. S., Belenguer, P., Caizergues-Ferrer, M., Pantaloni, A., Amalric, F. (https://doi.org/10.1111/j.1432-1033.1988.tb14224.x>
15. 2013) DNA-damage response in chromatin of ribosomal genes and the surrounding genome. Gene 522, 156-167.
< , V., Legartová, S., Kozubek, S., Hofer, M., Bártová, E. (https://doi.org/10.1016/j.gene.2013.03.108>
16. 2001) Single ribosomal transcription units are linear, compacted Christmas trees in plant nucleoli. Plant J. 27, 223-233.
< , P., Wells, B., Beven, A. F., Shaw, P. J. (https://doi.org/10.1046/j.1365-313x.2001.01091.x>
17. 1994) Inhibition of topoisomerase II activity and its effect on nucleolar structure and function. Exp. Cell Res. 211, 36-41.
< , M., Farabegoli, F., Pession, A., Novello, F. (https://doi.org/10.1006/excr.1994.1055>
18. 1965) [Ultrastructure cytochemistry of the nucleolus. II. Study of the sites of RNA synthesis in the nucleolus and the nucleus]. Exp. Cell Res. 38, 604-619.
< , N., Granboulan, P. (https://doi.org/10.1016/0014-4827(65)90384-8>
19. 2002) The nucleolus – a gateway to viral infection? Arch. Virol. 147, 1077-1089.
< , J. A. (https://doi.org/10.1007/s00705-001-0792-0>
20. 2007) RNA viruses: hijacking the dynamic nucleolus. Nat. Rev. Microbiol. 5, 119-127.
< , J. A. (https://doi.org/10.1038/nrmicro1597>
21. 2010) SUV39h-independent association of HP1β with fibrillarin-positive nucleolar regions. Chromosoma 119, 227-241.
< , A. H., Bártová, E., Galiová, G., Uhlířová, R., Matula, P., Kozubek, S. (https://doi.org/10.1007/s00412-009-0252-2>
22. 2011) Reactive oxygen species regulate nucleostemin oligomerization and protein degradation. J. Biol. Chem. 286, 11035-11046.
< , M., Whang, P., Chodaparambil, J. V., Pollyea, D. A., Kusler, B., Xu, L., Felsher, D. W., Mitchell, B. S. (https://doi.org/10.1074/jbc.M110.208470>
23. 2005) Cellular dynamics and modulation of WRN protein is DNA damage specific. Mech. Ageing Dev. 126, 1146-1158.
< , P., Bohr, V. A. (https://doi.org/10.1016/j.mad.2005.06.004>
24. 2004) Loss of CARM1 results in hypomethylation of thymocyte cyclic AMP-regulated phosphoprotein and deregulated early T cell development. J. Biol. Chem. 279, 25339-25344.
< , J., Lee, J., Yadav, N., Wu, Q., Carter, C., Richard, S., Richie, E., Bedford, M. T. (https://doi.org/10.1074/jbc.M402544200>
25. 2005) The nucleolus. J. Cell Sci. 118(Pt 7), 1335-1337.
< , Y. W., Trinkle-Mulcahy, L., Lamond, A. I. (https://doi.org/10.1242/jcs.01736>
26. 2010) Regulation of stress-induced nuclear protein redistribution: a new function of Bax and Bak uncoupled from Bcl-x(L). Cell Death Differ. 17, 346-359.
< , L., Blacher, E., Borner, C., Stein, R. (https://doi.org/10.1038/cdd.2009.145>
27. 2011) Quantitative proteomics and dynamic imaging of the nucleolus reveal distinct responses to UV and ionizing radiation. Mol. Cell. Proteomics 10, M111.009241.
< , H. M., Bai, B., Boisvert, F. M., Latonen, L., Rantanen, V., Simpson, J. C., Pepperkok, R., Lamond, A. I., Laiho, M. (https://doi.org/10.1074/mcp.M111.009241>
28. 2011) Nucleolar localization/ retention signal is responsible for transient accumulation of histone H2B in the nucleolus through electrostatic interactions. Biochim. Biophys. Acta 1813, 27-38.
< , Y. R., Lisitsyna, O. M., Golyshev, S. A., Tuzhikov, A. I., Polyakov, V. Y., Sheval, E. V. (https://doi.org/10.1016/j.bbamcr.2010.11.003>
29. 2005) The moving parts of the nucleolus. Histochem. Cell Biol. 123, 203-216.
< , M. O., Dundr, M. (https://doi.org/10.1007/s00418-005-0754-9>
30. 2003) Diffusion-based transport of nascent ribosomes in the nucleus. Mol. Biol. Cell 14, 4805-4812.
< , J. C., Tuft, R. A., Pederson, T. (https://doi.org/10.1091/mbc.e03-06-0395>
31. 2003) Oldies but goldies: searching for Christmas trees within the nucleolar architecture. Trends Cell Biol. 13, 517-525.
< , I. (https://doi.org/10.1016/j.tcb.2003.08.003>
32. 2004) The nucleolus and transcription of ribosomal genes. Biol. Cell 96, 579-594.
< , I., Koberna, K., Malinsky, J., Fidlerova, H., Masata, M. (https://doi.org/10.1016/j.biolcel.2004.04.015>
33. 2006) New insights into nucleolar architecture and activity. Int. Rev. Cytol. 255, 177-235.
< , I., Shaw, P. J., Cmarko, D. (https://doi.org/10.1016/S0074-7696(06)55004-1>
34. Rohlf, F. J., Sokal, R. R. (1995) Statistical Tables. 3rd Edition, W. H. Freeman and Co., New York.
35. 1971) On the differential cytotoxicity of actinomycin D. J. Cell Biol. 50, 746-761.
< , S. G., Godman, G. C. (https://doi.org/10.1083/jcb.50.3.746>
36. 1990) Functional and dynamic aspects of the mammalian nucleolus. Bioessays 12, 14-21.
< , U., Benavente, R. (https://doi.org/10.1002/bies.950120104>
37. 2002) Functional proteomic analysis of human nucleolus. Mol. Biol. Cell 13, 4100-4109.
< , A., Coute, Y., Deon, C., Calle, A., Kindbeiter, K., Sanchez, J. C., Greco, A., Hochstrasser, D., Diaz, J. J. (https://doi.org/10.1091/mbc.e02-05-0271>
38. 2010) Identification of a novel inhibitor of coactivator-associated arginine methyltransferase 1 (CARM1)-mediated methylation of histone H3 Arg-17. J. Biol. Chem. 285, 7143-7152.
< , B. R., Batta, K., Kishore, A. H., Mantelingu, K., Varier, R. A., Balasubramanyam, K., Pradhan, S. K., Dasgupta, D., Sriram, S., Agrawal, S., Kundu, T. K. (https://doi.org/10.1074/jbc.M109.063933>
39. 2005) Dynamic sorting of nuclear components into distinct nucleolar caps during transcriptional inhibition. Mol. Biol. Cell 16, 2395-2413.
< , Y., Blechman, J., Darzacq, X., Montagna, C., Dye, B. T., Patton, J. G., Singer, R. H., Zipori, D. (https://doi.org/10.1091/mbc.e04-11-0992>
40. 1995) The nucleolus. Annu. Rev. Cell Dev. Biol. 11, 93-121.
< , P. J., Jordan, E. G. (https://doi.org/10.1146/annurev.cb.11.110195.000521>
41. 2011) Heterogeneity in the kinetics of nuclear proteins and trajectories of substructures associated with heterochromatin. Epigenetics Chromatin 4, 5.
< , L., Bártová, E., Matula, P., Daněk, O., Legartová, S., Kozubek, S. (https://doi.org/10.1186/1756-8935-4-5>
42. 2012) Trajectories and nuclear arrangement of PML bodies are influenced by A-type lamin deficiency. Biol. Cell 104, 418-432.
< , L., Matula, P., Kozubek, S., Gombitová, A., Cmarko, D., Raška, I., Bártová, E. (https://doi.org/10.1111/boc.201100053>
43. 2007) G1 phase-dependent nucleolar accumulation of human histone H1x. Biol. Cell 99, 541-552.
< , S., Wenzel, D., Schulze, E., Doenecke, D., Happel, N. (https://doi.org/10.1042/BC20060117>
44. 2009) H3K9 acetylation and radial chromatin positioning. J. Cell Physiol. 220, 91-101.
< , L., Bártová, E., Harničarová, A., Galiová, G., Krejčí, J., Kozubek, S. (https://doi.org/10.1002/jcp.21734>
45. 2007) H1.X with different properties from other linker histones is required for mitotic progression. FEBS Lett. 581, 3783-3788.
< , H., Matsunaga, S., Morimoto, A., Ono-Maniwa, R., Uchiyama, S., Fukui, K. (https://doi.org/10.1016/j.febslet.2007.06.076>
46. 2000) Dynamics and three-dimensional localization of ribosomal RNA within the nucleolus. RNA 6, 1750-1761.
< , M., Cheutin, T., O’Donohue, M. F., Kaplan, H., Ploton, D. (https://doi.org/10.1017/S1355838200001564>