Fol. Biol. 2015, 61, 49-59

https://doi.org/10.14712/fb2015061020049

Ellagic Acid-Changed Epigenome of Ribosomal Genes and Condensed RPA194-Positive Regions of Nucleoli in Tumour Cells

S. Legartová1, G. Sbardella2, S. Kozubek1, Eva Bártová1

1Institute of Biophysics, Academy of Sciences of the Czech Republic, v. v. i., Brno, Czech Republic
2Epigenetic MedChem Lab, Università di Salerno Dipartimento di Farmacia, Fisciano, Salerno, Italy

Received December 2014
Accepted January 2015

References

1. Al-Baker, E. A., Oshin, M., Hutchison, C. J., Kill, I. R. (2005) Analysis of UV-induced damage and repair in young and senescent human dermal fibroblasts using the comet assay. Mech. Ageing Dev. 126, 664-672. <https://doi.org/10.1016/j.mad.2004.12.002>
2. Andersen, J. S., Lam, Y. W., Leung, A. K., Ong, S. E., Lyon, C. E., Lamond, A. I., Mann, M. (2005) Nucleolar proteome dynamics. Nature 433, 77-83. <https://doi.org/10.1038/nature03207>
3. Bae, J. Y., Choi, J. S., Kang, S. W., Lee, Y. J., Park, J., Kang, Y. H. (2010) Dietary compound ellagic acid alleviates skin wrinkle and inflammation induced by UV-B irradiation. Exp. Dermatol. 19, e182-190. <https://doi.org/10.1111/j.1600-0625.2009.01044.x>
4. Bártová, E., Kozubek, S., Kozubek, M., Jirsová, P., Lukášová, E., Skalníková, M., Buchníčková, K. (2000) The influence of the cell cycle, differentiation and irradiation on the nuclear location of the abl, bcr and c-myc genes in human leukemic cells. Leuk. Res. 24, 233-241. <https://doi.org/10.1016/S0145-2126(99)00174-5>
5. Bauer, P. I., Chen, H. J., Kenesi, E., Kenessey, I., Buki, K. G., Kirsten, E., Hakam, A., Hwang, J. I., Kun, E. (2001) Molecular interactions between poly(ADP-ribose) polymerase (PARP I) and topoisomerase I (Topo I): identification of topology of binding. FEBS Lett. 506, 239-242. <https://doi.org/10.1016/S0014-5793(01)02919-2>
6. Boisvert, F. M., van Koningsbruggen, S., Navascues, J., Lamond, A. I. (2007) The multifunctional nucleolus. Nat. Rev. Mol. Cell Biol. 8, 574-585. <https://doi.org/10.1038/nrm2184>
7. Boulon, S., Westman, B. J., Hutten, S., Boisvert, F. M., Lamond, A. I. (2010) The nucleolus under stress. Mol. Cell 40, 216-227. <https://doi.org/10.1016/j.molcel.2010.09.024>
8. Calle, A., Ugrinova, I., Epstein, A. L., Bouvet, P., Diaz, J. J., Greco, A. (2008) Nucleolin is required for an efficient herpes simplex virus type 1 infection. J. Virol. 82, 4762-4773. <https://doi.org/10.1128/JVI.00077-08>
9. Castellano, S., Spannhoff, A., Milite, C., Dal Piaz, F., Cheng, D., Tosco, A., Viviano, M, Yamani, A., Cianciulli, A., Sala, M., Cura, V., Cavarelli, J., Novellino, E., Mai, A., Bedford, M. T., Sbardella, G. (2012) Identification of small-molecule enhancers of arginine methylation catalyzed by coactivator- associated arginine methyltransferase 1. J. Med. Chem. 55, 9875-9890. <https://doi.org/10.1021/jm301097p>
10. Chen, D., Dundr, M., Wang, C., Leung, A., Lamond, A., Misteli, T., Huang, S. (2005) Condensed mitotic chromatin is accessible to transcription factors and chromatin structural proteins. J. Cell Biol. 168, 41-54. <https://doi.org/10.1083/jcb.200407182>
11. Daniely, Y., Dimitrova, D. D., Borowiec, J. A. (2002) Stressdependent nucleolin mobilization mediated by p53-nucleolin complex formation. Mol. Cell Biol. 22, 6014-6022. <https://doi.org/10.1128/MCB.22.16.6014-6022.2002>
12. Derenzini, M. (2000) The AgNORs. Micron 31, 117-120. <https://doi.org/10.1016/S0968-4328(99)00067-0>
13. Dove, B. K., You, J. H., Reed, M. L., Emmett, S. R., Brooks, G., Hiscox, J. A. (2006) Changes in nucleolar morphology and proteins during infection with the coronavirus infectious bronchitis virus. Cell. Microbiol. 8, 1147-1157. <https://doi.org/10.1111/j.1462-5822.2006.00698.x>
14. Erard, M. S., Belenguer, P., Caizergues-Ferrer, M., Pantaloni, A., Amalric, F. (1988) A major nucleolar protein, nucleolin, induces chromatin decondensation by binding to histone H1. Eur. J. Biochem. 175, 525-530. <https://doi.org/10.1111/j.1432-1033.1988.tb14224.x>
15. Foltánková, V., Legartová, S., Kozubek, S., Hofer, M., Bártová, E. (2013) DNA-damage response in chromatin of ribosomal genes and the surrounding genome. Gene 522, 156-167. <https://doi.org/10.1016/j.gene.2013.03.108>
16. Gonzalez-Melendi, P., Wells, B., Beven, A. F., Shaw, P. J. (2001) Single ribosomal transcription units are linear, compacted Christmas trees in plant nucleoli. Plant J. 27, 223-233. <https://doi.org/10.1046/j.1365-313x.2001.01091.x>
17. Govoni, M., Farabegoli, F., Pession, A., Novello, F. (1994) Inhibition of topoisomerase II activity and its effect on nucleolar structure and function. Exp. Cell Res. 211, 36-41. <https://doi.org/10.1006/excr.1994.1055>
18. Granboulan, N., Granboulan, P. (1965) [Ultrastructure cytochemistry of the nucleolus. II. Study of the sites of RNA synthesis in the nucleolus and the nucleus]. Exp. Cell Res. 38, 604-619. <https://doi.org/10.1016/0014-4827(65)90384-8>
19. Hiscox, J. A. (2002) The nucleolus – a gateway to viral infection? Arch. Virol. 147, 1077-1089. <https://doi.org/10.1007/s00705-001-0792-0>
20. Hiscox, J. A. (2007) RNA viruses: hijacking the dynamic nucleolus. Nat. Rev. Microbiol. 5, 119-127. <https://doi.org/10.1038/nrmicro1597>
21. Horáková, A. H., Bártová, E., Galiová, G., Uhlířová, R., Matula, P., Kozubek, S. (2010) SUV39h-independent association of HP1β with fibrillarin-positive nucleolar regions. Chromosoma 119, 227-241. <https://doi.org/10.1007/s00412-009-0252-2>
22. Huang, M., Whang, P., Chodaparambil, J. V., Pollyea, D. A., Kusler, B., Xu, L., Felsher, D. W., Mitchell, B. S. (2011) Reactive oxygen species regulate nucleostemin oligomerization and protein degradation. J. Biol. Chem. 286, 11035-11046. <https://doi.org/10.1074/jbc.M110.208470>
23. Karmakar, P., Bohr, V. A. (2005) Cellular dynamics and modulation of WRN protein is DNA damage specific. Mech. Ageing Dev. 126, 1146-1158. <https://doi.org/10.1016/j.mad.2005.06.004>
24. Kim, J., Lee, J., Yadav, N., Wu, Q., Carter, C., Richard, S., Richie, E., Bedford, M. T. (2004) Loss of CARM1 results in hypomethylation of thymocyte cyclic AMP-regulated phosphoprotein and deregulated early T cell development. J. Biol. Chem. 279, 25339-25344. <https://doi.org/10.1074/jbc.M402544200>
25. Lam, Y. W., Trinkle-Mulcahy, L., Lamond, A. I. (2005) The nucleolus. J. Cell Sci. 118(Pt 7), 1335-1337. <https://doi.org/10.1242/jcs.01736>
26. Lindenboim, L., Blacher, E., Borner, C., Stein, R. (2010) Regulation of stress-induced nuclear protein redistribution: a new function of Bax and Bak uncoupled from Bcl-x(L). Cell Death Differ. 17, 346-359. <https://doi.org/10.1038/cdd.2009.145>
27. Moore, H. M., Bai, B., Boisvert, F. M., Latonen, L., Rantanen, V., Simpson, J. C., Pepperkok, R., Lamond, A. I., Laiho, M. (2011) Quantitative proteomics and dynamic imaging of the nucleolus reveal distinct responses to UV and ionizing radiation. Mol. Cell. Proteomics 10, M111.009241. <https://doi.org/10.1074/mcp.M111.009241>
28. Musinova, Y. R., Lisitsyna, O. M., Golyshev, S. A., Tuzhikov, A. I., Polyakov, V. Y., Sheval, E. V. (2011) Nucleolar localization/ retention signal is responsible for transient accumulation of histone H2B in the nucleolus through electrostatic interactions. Biochim. Biophys. Acta 1813, 27-38. <https://doi.org/10.1016/j.bbamcr.2010.11.003>
29. Olson, M. O., Dundr, M. (2005) The moving parts of the nucleolus. Histochem. Cell Biol. 123, 203-216. <https://doi.org/10.1007/s00418-005-0754-9>
30. Politz, J. C., Tuft, R. A., Pederson, T. (2003) Diffusion-based transport of nascent ribosomes in the nucleus. Mol. Biol. Cell 14, 4805-4812. <https://doi.org/10.1091/mbc.e03-06-0395>
31. Raška, I. (2003) Oldies but goldies: searching for Christmas trees within the nucleolar architecture. Trends Cell Biol. 13, 517-525. <https://doi.org/10.1016/j.tcb.2003.08.003>
32. Raška, I., Koberna, K., Malinsky, J., Fidlerova, H., Masata, M. (2004) The nucleolus and transcription of ribosomal genes. Biol. Cell 96, 579-594. <https://doi.org/10.1016/j.biolcel.2004.04.015>
33. Raška, I., Shaw, P. J., Cmarko, D. (2006) New insights into nucleolar architecture and activity. Int. Rev. Cytol. 255, 177-235. <https://doi.org/10.1016/S0074-7696(06)55004-1>
34. Rohlf, F. J., Sokal, R. R. (1995) Statistical Tables. 3rd Edition, W. H. Freeman and Co., New York.
35. Sawicki, S. G., Godman, G. C. (1971) On the differential cytotoxicity of actinomycin D. J. Cell Biol. 50, 746-761. <https://doi.org/10.1083/jcb.50.3.746>
36. Scheer, U., Benavente, R. (1990) Functional and dynamic aspects of the mammalian nucleolus. Bioessays 12, 14-21. <https://doi.org/10.1002/bies.950120104>
37. Scherl, A., Coute, Y., Deon, C., Calle, A., Kindbeiter, K., Sanchez, J. C., Greco, A., Hochstrasser, D., Diaz, J. J. (2002) Functional proteomic analysis of human nucleolus. Mol. Biol. Cell 13, 4100-4109. <https://doi.org/10.1091/mbc.e02-05-0271>
38. Selvi, B. R., Batta, K., Kishore, A. H., Mantelingu, K., Varier, R. A., Balasubramanyam, K., Pradhan, S. K., Dasgupta, D., Sriram, S., Agrawal, S., Kundu, T. K. (2010) Identification of a novel inhibitor of coactivator-associated arginine methyltransferase 1 (CARM1)-mediated methylation of histone H3 Arg-17. J. Biol. Chem. 285, 7143-7152. <https://doi.org/10.1074/jbc.M109.063933>
39. Shav-Tal, Y., Blechman, J., Darzacq, X., Montagna, C., Dye, B. T., Patton, J. G., Singer, R. H., Zipori, D. (2005) Dynamic sorting of nuclear components into distinct nucleolar caps during transcriptional inhibition. Mol. Biol. Cell 16, 2395-2413. <https://doi.org/10.1091/mbc.e04-11-0992>
40. Shaw, P. J., Jordan, E. G. (1995) The nucleolus. Annu. Rev. Cell Dev. Biol. 11, 93-121. <https://doi.org/10.1146/annurev.cb.11.110195.000521>
41. Stixová, L., Bártová, E., Matula, P., Daněk, O., Legartová, S., Kozubek, S. (2011) Heterogeneity in the kinetics of nuclear proteins and trajectories of substructures associated with heterochromatin. Epigenetics Chromatin 4, 5. <https://doi.org/10.1186/1756-8935-4-5>
42. Stixová, L., Matula, P., Kozubek, S., Gombitová, A., Cmarko, D., Raška, I., Bártová, E. (2012) Trajectories and nuclear arrangement of PML bodies are influenced by A-type lamin deficiency. Biol. Cell 104, 418-432. <https://doi.org/10.1111/boc.201100053>
43. Stoldt, S., Wenzel, D., Schulze, E., Doenecke, D., Happel, N. (2007) G1 phase-dependent nucleolar accumulation of human histone H1x. Biol. Cell 99, 541-552. <https://doi.org/10.1042/BC20060117>
44. Strašak, L., Bártová, E., Harničarová, A., Galiová, G., Krejčí, J., Kozubek, S. (2009) H3K9 acetylation and radial chromatin positioning. J. Cell Physiol. 220, 91-101. <https://doi.org/10.1002/jcp.21734>
45. Takata, H., Matsunaga, S., Morimoto, A., Ono-Maniwa, R., Uchiyama, S., Fukui, K. (2007) H1.X with different properties from other linker histones is required for mitotic progression. FEBS Lett. 581, 3783-3788. <https://doi.org/10.1016/j.febslet.2007.06.076>
46. Thiry, M., Cheutin, T., O’Donohue, M. F., Kaplan, H., Ploton, D. (2000) Dynamics and three-dimensional localization of ribosomal RNA within the nucleolus. RNA 6, 1750-1761. <https://doi.org/10.1017/S1355838200001564>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Submissions

Archive