Fol. Biol. 2015, 61, 184-194
https://doi.org/10.14712/fb2015061050184
Characterization of Porcine Granulosa Cell Line AVG-16
References
1. 2010) An introduction to the molecular basics of aryl hydrocarbon receptor biology. Biol. Chem. 391, 1235-1248.
< , J., Haarmann-Stemmann, T. (https://doi.org/10.1515/bc.2010.128>
2. 1977) Control of differentiation, transformation, and apoptosis in granulosa cells by oncogenes, oncoviruses, and tumor suppressor genes. Endocr. Rev. 18, 435-461.
, A., Selvaraj, N. (
3. Amsterdam, A., Keren-Tal, I., Dantes, A., Matiyahou, A., Plehn-Dujowich, D. (1993) Generation of ovarian steroidogenic cell lines. In: The Ovary, eds. Adashi, E. Y., Leung, P. C. K., pp 487-500, Raven Press, New York.
4. 2010) The impact of the phyto-oestrogen genistein on swine granulosa cell function. J. Anim. Physiol. Anim. Nutr. 94, 374-382.
< , G., Bussolati, S., Santini, S. E., Grasselli, F. (https://doi.org/10.1111/j.1439-0396.2010.01025.x>
5. 1990) Cyclic AMP inhibits fibronectin gene expression in a newly developed granulosa cell line by a mechanism that suppresses cAMP-responsive element-dependent transcriptional activation. J. Biol. Chem. 265, 18219-18226.
< , V. A., Muro, A. F., Vitullo, A. D., Bley, M. A., Barañao, J. L., Kornblihtt, A. R. (https://doi.org/10.1016/S0021-9258(17)44741-7>
6. 1993) Characterization of immortalized mouse granulosa cell lines. In Vitro Cell. Dev. Biol. 29A, 847-854.
< , T. W., Van de Voorde, A., Vanderstichele, H. (https://doi.org/10.1007/BF02631362>
7. 2014) Frozen and fresh ovarian tissue require different culture media to promote in vitro development of bovine preantral follicles. Biopreserv. Biobank. 12, 317-324.
< , S. V., Carvalho, A. A., Silva, C. M., Santos, F. W., Campello, C. C., de Figueiredo, J. R., Rodrigues, A. P. (https://doi.org/10.1089/bio.2014.0020>
8. 1970) Effects of dibutyryl cyclic-3’,5’-AMP and other agents upon luteinization of porcine granulosa cells in culture. Endocrinology 87, 165-169.
< , C. P., Seymour, J. F. (https://doi.org/10.1210/endo-87-1-165>
9. 1998) Establishment of a stable steroidogenic porcine granulosa cell line. J. Mol. Endocrinol. 20, 287-292.
< , P. J., Rodway, M. R., Swan, C. L., Gillio-Meina, C. (https://doi.org/10.1677/jme.0.0200287>
10. 2003) A rat cell line derived from DMBA-induced mammary carcinoma. Life Sci. 73, 27-40.
< , L. W., Cheung, M. N., Loo, W. T., Guan, X. Y. (https://doi.org/10.1016/S0024-3205(03)00253-4>
11. 2012) Quantitative analysis of oestrogen receptor α and β gene expression during prolonged culture of pig granulosa cells. J. Anim. Feed Sci. 21, 313-323.
< , E., Kott, T. (https://doi.org/10.22358/jafs/66080/2012>
12. 1998) Assessment of the mechanism by which prolactin stimulates progesterone production by early corpora lutea of pigs. J. Endocrinol. 159, 201-209.
< , R., Petroff, B., Ottobre, A., Guan, Z., Stokes, B., Ottobre, J. (https://doi.org/10.1677/joe.0.1590201>
13. 2001) Luteotrophic action of prolactin during the early luteal phase in pigs: the involvement of protein kinases and phosphatases. Reprod. Biol. 1, 63-83.
, R., Opałka, M., Kamińska, B., Wojtczak, M., Okrasa, S., Dusza, L. (
14. Ciereszko, R., Nynca, A., Kraszewska, O. (2007) Phytoestrogen action on the ovary. In: The Novel Concepts in Ovarian Endocrinology, ed. Gonzalez Bulnes, A., pp. 303-327, Transworld Research Network, Kerala, India.
15. Freshney, R. I. (2005) Culture of Animal Cells: A Manual of Basic Technique. John Wiley and Sons Inc., Hoboken, New Jersey.
16. 2004) Ovarian granulosa cell lines. Mol. Cell. Endocrinol. 228, 67-78.
< , J. C., Rainey, W. E., Carr, B. R. (https://doi.org/10.1016/j.mce.2004.04.018>
17. 2002) Immortalisation of ovarian granulosa and theca cells of the marmoset monkey Calllithrix jacchus. ALTEX 19(Suppl) 1, 64-72.
, B., Lieder, K., Marten, A., Jurdzinski, A., Fuhrmann, K., Petry, H., Lüke, A., Einspanier, A. (
18. 2006) A method for prolonged survival of primary cell lines. In Vitro Cell Dev. Biol. Anim. 42, 143-1488.
< , M. A. (https://doi.org/10.1290/0511081.1>
19. 1984) Establishment and characterization of an estrogen-producing human ovarian granulosa tumor cell line. J. Natl. Cancer. Inst. 72, 789-800.
, I., Ishiwata, C., Soma, M., Kobayashi, N., Ishikawa, H. (
20. 2011a) In vitro effects of 2,3,7,8 tetrachlorodibenzop- dioxin (TCDD) on ovarian, pituitary and pineal function in pigs. Theriogenology 76, 921-932.
< , O., Piasecka, J., Petroff, B. K., Nynca, A., Siawrys, G., Wąsowska, B., Żmijewska, A., Lewczuk, B., Ciereszko, R. E. (https://doi.org/10.1016/j.theriogenology.2011.04.023>
21. 2011b) The expression of the aryl hydrocarbon receptor in reproductive and neuroendocrine tissues during the estrous cycle in the pig. Anim. Reprod. Sci. 126, 221-228.
< , O., Piasecka, J., Ostrowska, M., Sobocińska, N., Wąsowska, B., Ciereszko, R. E. (https://doi.org/10.1016/j.anireprosci.2011.05.010>
22. 2013) The expression of aryl hydrocarbon receptor in porcine ovarian cells. Reprod. Domest. Anim. 48, 710-716.
< , O., Ciereszko, R. E. (https://doi.org/10.1111/rda.12145>
23. 2014) 2,3,7,8-Tetrachlorodibenzo-p-dioxin alters steroid secretion but does not affect cell viability and the incidence of apoptosis in porcine luteinised granulosa cells. Acta Vet. Hung. 62, 408-421.
< , O., Piasecka-Srader, J., Nynca, A., Kołomycka, A., Robak, A., Wąsowska, B., Ciereszko, R. E. (https://doi.org/10.1556/avet.2014.015>
24. 1977) Establishment of duck cell line derived from experimental tumor induced by 20-methylcholanthrene. In Vitro 3, 849-856.
< , C-Y., Shadduck, J. A. (https://doi.org/10.1007/BF02615134>
25. 2014) Association between the expression of LHR, FSHR and CYP19 genes, cellular distribution of encoded proteins and proliferation of porcine granulosa cells in real-time. J. Biol. Regul. Homeost. Agents 28, 419-431.
, B., Ziółkowska, A., Ciesiółka, S., Piotrowska, H., Antosik, P., Bukowska, D., Nowicki, M., Brüssow, K. P., Zabel, M. (
26. 2013) Antiandrogen flutamide affects folliculogenesis during fetal development in pigs. Reproduction 145, 265-76.
< , K., Durlej-Grzesiak, M., Ciereszko, R. E., Koziorowski, M., Slomczynska, M. (https://doi.org/10.1530/REP-12-0236>
27. 1996) Steroidogenic properties of a spontaneously established porcine granulosa cell line (PGC-2). Mol. Reprod. Dev. 45, 299-307.
< , I., Farookhi, R., the Huynh, H., Murphy, B. D., Turner, J. D., Downey, B. R. (https://doi.org/10.1002/(SICI)1098-2795(199611)45:3<299::AID-MRD6>3.0.CO;2-N>
28. 1993) Expression of the IGF system in primary and immortalized porcine ovarian granulosa cells. Mol. Cell. Endocrinol. 97, 29-35.
< , J. K., Grimes, R. W., Canning, S., Hammond, J. M. (https://doi.org/10.1016/0303-7207(93)90208-2>
29. 1995) Comparative studies between freshly isolated and spontaneously immortalized bovine granulosa cells: protein secretion, steroid metabolism, and responsiveness to growth factors. J. Cell Physiol. 164, 395–403.
< , A. A. C., Salamone, D. F., Chiappe, M. E., Barañao, J. L. (https://doi.org/10.1002/jcp.1041640220>
30. 1997) Folliclestimulating hormone induces terminal differentiation in a predifferentiated rat granulosa cell line (ROG). Endocrinology 138, 2648-2657.
< , R., Phillips, D. M., Moore, A., Mather, J. P. (https://doi.org/10.1210/endo.138.7.5154>
31. 2005) Establishment of an immortalized porcine granulosa cell line (PGV) and the study on the potential mechanisms of PGV cell proliferation. Keio J. Med. 54, 29-38.
< , M.-T. (https://doi.org/10.2302/kjm.54.29>
32. 1989) Granulosa cell differentiation- stage-specific cytotoxic activity in bovine and rat sera. Biol. Reprod. 40, 1265-1273.
< , R., Farookhi, R. A. (https://doi.org/10.1095/biolreprod40.6.1265>
33. Mather, J. P., Roberts, P. E. (1998) Introduction to Cell and Tissue Culture: Theory and Technique. Plenum Press, New York.
34. 1981) Granulosa cell differentiation in vitro: effect of insulin on growth and functional integrity. Biol. Reprod. 25, 421-431.
< , J. V., Schomberg, D. W. (https://doi.org/10.1095/biolreprod25.2.421>
35. 2001) Establishment and characterization of a steroidogenic human granulosa-like tumor cell line, KGN, that expresses functional follicle-stimulating hormone receptor. Endocrinology 142, 437-445.
< , Y., Yanase, T., Mu, Y-M., Oba, K., Ichino, I., Saito, M., Nomura, M., Mukasa, C., Okabe, T., Goto, K., Takayanagi, R., Kashimura, Y., Haji, M., Nawata, H. (https://doi.org/10.1210/endo.142.1.7862>
36. 2006) Effect of genistein on steroidogenic response of granulosa cell populations from porcine preovulatory follicles. Reprod. Biol. 6, 31-50.
, A., Ciereszko, R. E. (
37. 2009) Effects of phytoestrogen daidzein and estradiol on steroidogenesis and expression of estrogen receptors in porcine luteinized granulosa cells from large follicles. J. Physiol. Pharmacol. 60, 95-105.
, A., Jablonska, O., Slomczynska, M., Petroff, B. K., Ciereszko, R. E. (
38. 2013a) Daidzein affects steroidogenesis and oestrogen receptor expression in medium ovarian follicles of pigs. Acta Vet. Hung. 61, 85-98.
< , A., Słonina, D., Jablonska, O., Kamińska, B., Ciereszko, R. E. (https://doi.org/10.1556/avet.2012.060>
39. 2013b) Biochanin A affects steroidogenesis and estrogen receptor-β expression in porcine granulosa cells. Theriogenology 80, 821-828.
< , A., Swigonska, S., Piasecka, J., Kolomycka, A., Kaminska, B., Radziewicz-Pigiel, M., Gut-Nagel, M., Ciereszko, R. E. (https://doi.org/10.1016/j.theriogenology.2013.07.009>
40. 1980) Serum suppresses the expression of hormonally induced functions in cultured granulosa cells. Cell 20, 817-827.
< , J., Sato, G., Erickson, G. F. (https://doi.org/10.1016/0092-8674(80)90328-1>
41. 2014) Effects of 2,3,7,8 tetrachlorodibenzo-p-dioxin and phytoestrogen genistein on the activity and the presence of steroidogenic enzyme proteins in cultured granulosa cells of pigs. Anim. Reprod. Sci. 148, 171-81.
< , J., Kolomycka, A., Nynca, A., Ciereszko, R. E. (https://doi.org/10.1016/j.anireprosci.2014.06.023>
42. 1999) Maintenance of oestradiol production and expression of cytochrome P450 aromatase enzyme mRNA in long-term serum-free cultures of pig granulosa cells. J. Reprod. Fertil. 115, 67-77.
< , H. M., Campbell, B. K., Hunter, M. G. (https://doi.org/10.1530/jrf.0.1150067>
43. 2014) Conditionally immortalized human pancreatic stellate cell lines demonstrate enhanced proliferation and migration in response to IGF-I. Exp. Cell Res. 330, 300-310.
< , A. H., Gundewar, C., Hilmersson, K. S., Ni, L., Saleem, M. A., Andersson, R. (https://doi.org/10.1016/j.yexcr.2014.09.033>
44. 1993) E6 of human papillomavirus type 16 can overcome the M1 stage of immortalization in human mammary epithelial cells but not in human fibroblasts. Oncogene 8, 1407-1413.
, J. W., Wright, W. E., Brasiskyte, D., Van der Haegen, B. A. (
45. 2005) Regulation of primordial follicle assembly and development. Hum. Reprod. Update 11, 461- 471.
< , M. K. (https://doi.org/10.1093/humupd/dmi020>
46. 2001) Estrogen receptor α and β expression in the porcine ovary. Folia Histochem. Cytobiol. 39, 137-138.
, M., Duda, M., Galas, J. (
47. 2001) Differential distribution of estrogen receptor-β and estrogen receptor-α in the porcine ovary. Exp. Clin. Endocrinol. Diabetes 109, 238-44.
< , M., Woźniak, J. (https://doi.org/10.1055/s-2001-15112>
48. 1982) Estrogen and progesterone secretion by isolated cultured porcine thecal and granulosa cells. Biol. Reprod. 26, 943-952.
< , S., Gregoraszczuk, E., Channing, C. P. (https://doi.org/10.1095/biolreprod26.5.943>
49. Stokłosowa, S. (2004) Culture of follicular cells. In: Cell and Tissue Culture, ed. Stokłosowa, S., pp. 423-438, PWN, Warszawa. (in Polish)
50. 2002) Primary antisera against selected steroids or proteins and secondary antisera against γ-globulins – an available tool for studies of reproductive processes. Reprod. Biol. 2, 187-204.
, B., Ziecik, A., Okrasa, S. (
51. 1976) X-radiation-induced transformation in a C3H mouse embryo derived cell line. Cancer Res. 36, 1367-1374.
, M., Little, J. B. (
52. 1978) Effects of follicle-stimulating hormone and estradiol upon progesterone secretion by porcine granulosa cells in tissue culture. Endocrinology 103, 74-80.
< , K. H., Channing, C. P. (https://doi.org/10.1210/endo-103-1-74>
53. 2007) In vitro exposure of porcine granulosa cells to the phytoestrogens genistein and daidzein: effects on the biosynthesis of reproductive steroid hormones. Reprod. Toxicol. 24, 317-325.
< , U., Schneider, F., Vanselow, J., Tomek, W. (https://doi.org/10.1016/j.reprotox.2007.07.008>
54. 2005) Establishment and characterization of a rat lung adenocarcinoma cell line with low malignant potential. Cancer Lett. 217, 97-103.
< , T., Mori, T., Amanuma, T., Tanaka, N., Tsutsumi, M. (https://doi.org/10.1016/j.canlet.2004.06.034>
55. 1994) Secretion of steroids, growth factors, and cytokines by immortalized mouse granulosa cell lines. Biol. Reprod. 50, 1190-1202.
< , H., Delaey, B., de Winter, J., de Jong, F., Rombauts, L., Verhoeven, G., Dello, C., van de Voorde, A., Briers, T. (https://doi.org/10.1095/biolreprod50.5.1190>
56. 1982a) Facilitative interactions between estradiol and luteinizing hormone in the regulation of progesterone production by cultured swine granulosa cells: relation to cellular cholesterol metabolism. Endocrinology 111, 441-447.
< , J. D., Klase, P. A., Strauss, J. F. 3rd, Hammond, J. M. (https://doi.org/10.1210/endo-111-2-441>
57. 1982b) The role of estradiol as a biological amplifier of the actions of follicle-stimulating hormone: in vitro studies in swine granulosa cells. Endocrinology 111, 144-151.
< , J. D., Klase, P. A., Strauss, J. F. 3rd, Hammond, J. M. (https://doi.org/10.1210/endo-111-1-144>
58. 1985) Bipotential actions of estrogen on progesterone biosynthesis by ovarian cells. II Relation of estradiol’s stimulatory actions to cholesterol and progestin metabolism in cultured swine granulosa cells. Endocrinology 117, 1076-1083.
< , J. D., Azimi, P., Garmey, J., Juchter, D. (https://doi.org/10.1210/endo-117-3-1076>
59. 1994) Monitoring mRNA by polymerase chain reaction: the “primer-dropping” method. Anal. Biochem. 223, 251-258.
< , H., Anderson, W. D., Cheng, T., Riabowol, K. T. (https://doi.org/10.1006/abio.1994.1581>
60. Wójtowicz, A. (2004) Cell lines. In: Cell and Tissue Culture, ed. Stokłosowa, S., pp. 140-156, PWN, Warszawa. (in Polish)
61. 2005) Aromatic hydrocarbon receptor (AhR) in the porcine theca and granulosa cells: effect of TCDD, PCB 126 and PCB 153 on the expression of AhR. Endocr. Regul. 39, 107-115.
, A., Tomanek, M., Augustowska, K., Gregoraszczuk, E. L. (
62. 1995) A radiation-induced murine ovarian granulosa cell tumor line: introduction of v-ras gene potentiates a high metastatic ability. Jpn. J. Cancer Res. 86, 347-356.
< , K., Nii, M., Tsumuraya, M., Numoto, M., Seito, T., Seyama, T. (https://doi.org/10.1111/j.1349-7006.1995.tb03063.x>
63. 1979) Production of long term steroid-producing granulosa cell cultures by cell hybridization. Endocrinology 105, 156-162.
< , A. J., Hillier, S. G., Knazek, R. A., Ross, G. T., Coon, H. G. (https://doi.org/10.1210/endo-105-1-156>
64. 1989) Expression of insulin-like growth factor-I and its receptor by SV40- transformed rat granulosa cells. Mol. Endocrinol. 3, 1488-1497.
< , M., Chou, J. Y., Lowe, W. L. Jr, Shen-Orr, Z., Roberts, C. T. Jr, LeRoith, D., Catt, K. J. (https://doi.org/10.1210/mend-3-9-1488>
65. 2000) Characterization of an immortalized human granulosa cell line (COV434). Mol. Hum. Reprod. 6, 146-153.
< , H., Vollmer, M., De Geyter, M., Litzistorf, Y., Ledewig, A., Dűrrenberger, M., Guggenheim, R., Miny, P., Holzgreve, W., De Geyter, Ch. (https://doi.org/10.1093/molehr/6.2.146>