Fol. Biol. 2015, 61, 233-240
https://doi.org/10.14712/fb2015061060233
Oestradiol Treatment Counteracts the Effect of Fructose-Rich Diet on Matrix Metalloproteinase 9 Expression and NFκB Activation
References
1. 2010) Cardiac and metabolic changes in long-term high fructose-fat fed rats with severe obesity and extensive intramyocardial lipid accumulation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298, R1560-R1570.
< , L. N., Lademann, J. B., Petersen, J. S., Holstein- Rathlou, N. H., Ploug, T., Prats, C., Pedersen, H. D., Kjølbye A. L. (https://doi.org/10.1152/ajpregu.00392.2009>
2. 2003) Structural basis of the matrix metalloproteinases and their physiological inhibitors, the tissue inhibitors of metalloproteinases. Biol. Chem. 384, 863-872.
< , W., Maskos, K. (https://doi.org/10.1515/BC.2003.097>
3. 1998) Synergistic upregulation of matrix metalloproteinase-9 by growth factors and inflammatory cytokines: an absolute requirement for transcription factor NF-κB. FEBS Lett. 435, 29-34.
< , M., Fabunmi, R. P., Baker, A. H., Newby, A. C. (https://doi.org/10.1016/S0014-5793(98)01034-5>
4. 2001) Inhibition of transcription factor NFkB reduces matrix metalloproteinase- 1, -3, and -9 production by vascular smooth muscle cells. Cardiovasc. Res. 50, 556-565.
< , M., Chase, A., Baker, A., Newby, A. (https://doi.org/10.1016/S0008-6363(01)00220-6>
5. 1995) Angiotensin II stimulates matrix metalloproteinase secretion in human vascular smooth muscle cells via nuclear factor-κB and activator protein 1 in a redox-sensitive manner. J. Vasc. Res. 42, 415-23.
< , M., Larsen, D., Pfeiffer, C. A., Gehrhe, S. G., Schmidt, J., Kranzhofer, A., Katus, H. A., Kranzhofer, R. (https://doi.org/10.1159/000087451>
6. 2015) Fructose-rich diet-induced changes in the expression of the renin angiotensin system molecules in the heart of ovariectomized female rats could be reversed by estradiol. Horm. Metab. Res. 47, 521-527.
, M., Zivkovic, M., Tepavcevic, S., Culafic, T., Koricanac, G., Stankovic, A. (
7. 2005) Local and systemic insulin resistance resulting from hepatic activation of IKK-β and NF-κB. Nat. Med. 11, 183-190.
< , D., Yuan, M., Frantz, D. F., Melendez, P. A., Hansen, L., Lee, J., Shoelson, S. E. (https://doi.org/10.1038/nm1166>
8. 2012) Insulin resistance promotes early atherosclerosis via increased proinflammatory proteins and oxidative stress in fructose fed ApoE-KO mice. Exp. Diabetes 2012, 941304.
, B., Lujan, A., Estrella, N., Lembo, C., Cruzado, M., Castro, C. (
9. 2012) Matrix metalloproteinase-9 deletion attenuates myocardial fibrosis and diastolic dysfunction in ageing mice. Cardiovasc. Res. 96, 444-455.
< , Y. A., Ramirez, T. A., Zamilpa, R., Okoronkwo, S. M., Dai, Q., Zhang, J., Jin, Y. F., Lindsey, M. L. (https://doi.org/10.1093/cvr/cvs275>
10. 2007) Vascular remodeling and prothrombotic markers in subjects affected by familial combined hyperlipidemia and/or metabolic syndrome in primary prevention for cardiovascular disease. Endothelium 14, 193-198.
< , A. F., Derosa, G., Manca, M., Bove, M., Borghi, C., Gaddi, A. V. (https://doi.org/10.1080/10623320701606731>
11. 2000) Cardiac remodelling – concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling. J. Am. Coll. Cardiol. 35, 569-82.
< , J. N., Ferrari, R., Sharpe, N. (https://doi.org/10.1016/S0735-1097(99)00630-0>
12. 1995) Fructose-induced hypertension in rats is concentration- and duration-dependent. J. Pharmacol. Toxicol. Methods 33, 101-107.
< , S., McNeil, J. H. (https://doi.org/10.1016/1056-8719(94)00063-A>
13. 2010) Fructose: a highly lipogenic nutrient implicated in insulin resistance, hepatic steatosis, and the metabolic syndrome. Am. J. Physiol. Endocrinol. Metab. 299, E685-694.
< , M. J., Su, Q., Baker, C., Rutledge, A. C., Adeli, K. (https://doi.org/10.1152/ajpendo.00283.2010>
14. 1995) Matrix metalloproteinases and cardiovascular disease. Circ. Res. 77, 863-868.
< , C. M., McEwan, J. R., Henney, A. M. (https://doi.org/10.1161/01.RES.77.5.863>
15. 2005) The metabolic syndrome. Lancet 365, 1415-1428.
< , R. H., Grundy, S. M., Zimmet, P. Z. (https://doi.org/10.1016/S0140-6736(05)66378-7>
16. 2003) Serum metalloproteinase-9 levels in patients with coronary artery disease: a novel marker of inflammation. J. Investig. Med. 51, 295-300.
< , P., Basili, S., Masrtini, F., Cardarello, C. M., Ceci, F., Di Franco, M., Bertazzoni, G., Gazzaniga, P. P., Alessandri, C. (https://doi.org/10.1177/108155890305100517>
17. 2009) The collagen binding domain of gelatinase A modulates degradation of collagen IV by gelatinase B. J. Mol. Biol. 386, 419-434.
< , M., Monaco, S., Van Den Steen, P. E., Sbardella, D., Grasso, G., Marini, S., Overall, C. M., Opdenakker, G., Colleta, M. (https://doi.org/10.1016/j.jmb.2008.12.021>
18. 2009) Increased circulating levels of matrix metalloproteinase (MMP)-8, MMP-9, and proinflammatory markers in patients with metabolic syndrome. Clin. Chim. Acta. 403, 173-177.
< , F. M., Jacob-Ferreira, A., Gomes, V., Casella-Filho, A., Chagas, A., Marcaccini, A., Gerlach, R., Tanus- Santos, J. (https://doi.org/10.1016/j.cca.2009.02.013>
19. 2004) Definition of metabolic syndrome: Report of the National Heart, Lung, and Blood Institute/ American Heart Association conference on scientific issues related to definition. Arterioscler. Thromb. Vasc. Biol. 24, e13-18.
, S. M., Brewer, H. B., Cleeman, J. I., Smith, S. C., Lenfant, C. (
20. 2007) Metabolic syndrome: a multiplex cardiovascular risk factor. J. Clin. Endocrinol. Metab. 92, 399-404.
< , S. M. (https://doi.org/10.1210/jc.2006-0513>
21. 2008) Angiotensin II induces matrix metalloproteinase-9 expression via a nuclear factor-κB-dependent pathway in vascular smooth muscle cells. Regul. Pept. 147, 37-44.
< , R., Yang, L., Wang, H., Liu, B., Wang, L. (https://doi.org/10.1016/j.regpep.2007.12.005>
22. 2001) Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care 24, 683-689.
< , B., Almgren, P., Tuomi, T., Forsén, B., Lahti, K., Nissén, M., Taskinen, M.R., Groop, L. (https://doi.org/10.2337/diacare.24.4.683>
23. 2013) Salvianolic acid A, a novel matrix metalloproteinase- 9 inhibitor, prevents cardiac remodeling in spontaneously hypertensive rats. PLoS One 8, e59621.
< , B., Li, D., Deng, Y., Teng, F., Chen, H., Wu, W., Liu, X., Guo, D. A. (https://doi.org/10.1371/journal.pone.0059621>
24. 2002) The renin-angiotensin and adrenergic nervous system in cardiac hypertrophy in fructose-fed rats. Am. J. Hypertens. 15, 66-71.
< , K., Rakugi, H., Higaki, J., Okamura, A., Nagai, M., Moriguchi, K., Ohishi, M., Satoh, N., Tuck, M. L., Ogihara, T. (https://doi.org/10.1016/S0895-7061(01)02232-4>
25. 2012) Mechanism of Ang II involvement in activation of NF-κB through phosphorylation of p65 during aging. Age 34, 11-25.
< , J. M., Heo, H. S., Ha, Y. M., Ye, B. H., Lee, E. K., Choi, Y. J., Yu, B. P., Chung, H. Y. (https://doi.org/10.1007/s11357-011-9207-7>
26. 1993) Role of angiotensin II in high fructoseinduced left ventricular hypertrophy in rats. Hypertension 21, 1051-1055.
< , R., Nagano, M., Nakamura, F., Higaki, J., Fujioka, Y., Ikegami, H., Mikami, H., Kawaguchi, N., Onishi, S., Ogihara, T. (https://doi.org/10.1161/01.HYP.21.6.1051>
27. 2009) Impact of estradiol on insulin signaling in the rat heart. Cell Biochem. Funct. 27, 102-110.
< , G., Milosavljevic, T., Stojiljkovic, M., Zakula, Z., Tepavcevic, S., Ribarac-Stepic, N., Isenovic, E. R. (https://doi.org/10.1002/cbf.1542>
28. 2013) Gender modulates development of the metabolic syndrome phenotype in fructose fed rats. Arch. Biol. Sci. 65, 455-464.
< , G., Djordjević, A., Žakula, Z., Vojnović-Milutinović, D., Tepavčević, S., Veličković, N., Milosavljević, T., Stojiljković, M., Romić, S., Matić, G. (https://doi.org/10.2298/ABS1302455K>
29. 1999) Angiotensin induces inflammatory activation of human vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 19, 1623-1629.
< , R., Schmidt, J., Pfeiffer, C. A., Hagl, S., Libby, P., Kubler, W. (https://doi.org/10.1161/01.ATV.19.7.1623>
30. 2005) Alteration in peripheral blood levels of TIMP-1, MMP-2 and MMP-9 in patients with type-2 diabetes. Diabetes Res. Clin. Pract. 69, 175-179.
< , S. W., Song, K. E., Shin, D. S., Ahn, S. M., Ha, E. S., Kim, D. J., Nam, M. S., Lee, K. W. (https://doi.org/10.1016/j.diabres.2004.12.010>
31. 2000) MMP/ TIMP expression in spontaneously hypertensive heart failure rats: the effect of ACE- and MMP-inhibition. Cardiovasc. Res. 46, 298-306.
< , H., Simon, H., Bocan, T. M., Peterson, J. T. (https://doi.org/10.1016/S0008-6363(00)00028-6>
32. 2002) TIMP-1: a marker of left ventricular diastolic dysfunction and fibrosis in hypertension. Hypertension 40, 136-141.
< , M. M., Maxwell, P., Dunn, F. G. (https://doi.org/10.1161/01.HYP.0000024573.17293.23>
33. 2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-ΔΔC(T)) method. Methods 25, 402-408.
< , K. J., Schmittgen, T. D. (https://doi.org/10.1006/meth.2001.1262>
34. 2004) Role of matrix metalloproteinases in hypertension-associated cardiac fibrosis. Curr. Opin. Nephrol. Hypertens. 13, 197-204.
, B., Gonzales, A., Diez, J. (
35. 2013) The protective effect and underlying mechanism of metformin on neointima formation in fructose-induced insulin resistant rats. Cardiovasc. Diabetol. 12, 58.
< , J., Ji, J., Meng, H., Wang, D., Jiang, B., Liu, L., Randell, E., Adeli, K., Meng, Q. H. (https://doi.org/10.1186/1475-2840-12-58>
36. 1993) Vascular cell adhesion molecule-1 (VCAM-1) gene transcription and expression are regulated trough an antioxidant-sensitive mechanism in human vascular endothelial cells. J. Clin. Invest. 92, 1866-1874.
< , N., Offermann, M. K., Swerlick, R., Kunsch, C., Rosen, C. A., Ahmad, M., Alexander, R. W., Medford, R. M. (https://doi.org/10.1172/JCI116778>
37. 2008) Increased plasma activity of metalloproteinase 2 in women with metabolic syndrome. Metabolism 57, 1493-1496.
< , V., Muzzio, M. L., Royer, M., Prada, M., Wikinski, R., Schreier, L., Berg, G. (https://doi.org/10.1016/j.metabol.2008.06.001>
38. 2004) ERK1/2 mediates TNF-α-induced matrix metalloproteinase-9 expression in human vascular smooth muscle cells via the regulation of NF-κB and AP-1: involvement of the RAS dependent pathway. J. Cell. Physiol. 198, 417-427.
< , S. K., Cha, B. Y., Kim, C. H. (https://doi.org/10.1002/jcp.10435>
39. 2006) Selective spatiotemporal induction of matrix metalloproteinase-2 and matrix metalloproteinase-9 transcription after myocardial infarction. Am. J. Physiol. Heart. Circ. Physiol. 291, H2216-2228.
< , R., Mingoia, J. T., Bruce, J. A., Austin, J. S., Stroud, R. E., Escobar, G. P., MaClister, D. M., Allen, C. M., Alfonso-Jaume, M. A., Fini, M. E., Lovett, D. H., Spinale, F. G. (https://doi.org/10.1152/ajpheart.01343.2005>
40. 2005) Dual role of matrix metalloproteinases (matrixins) in intimal thickening and atherosclerotic plaque rupture. Physiol. Rev. 85, 1-31.
< , A. C. (https://doi.org/10.1152/physrev.00048.2003>
41. 2008) Captopril attenuates matrix metalloproteinase-2 and -9 in monocrotaline-induced right ventricular hypertrophy in rats. J. Pharmacol. Sci. 108, 487-494.
< , M., Kikuzuki, R., Harada, T., Hori, Y., Yamawaki, H., Hara, Y. (https://doi.org/10.1254/jphs.08174FP>
42. 2009) Effects of telmisatran on right ventricular remodeling induced by monocrotaline in rats. J. Pharmacol. Sci. 111, 193-200.
< , M., Harada, T., Kikuzuki, R., Hori, Y., Yamawaki, H., Hara, Y. (https://doi.org/10.1254/jphs.09112FP>
43. 2010) Angiotensin II enhances interleukin-1β induced MMP-9 secretion in adult rat cardiac fibroblasts. J. Vet. Med. Sci. 72, 735-739.
< , M., Yamawaki, H., Hara, Y. (https://doi.org/10.1292/jvms.09-0582>
44. 2008) Metabolic syndrome: comparison of the two commonly used animal models. Am. J. Hypertens. 21, 1018-1022.
< , M., Kamari, Y., Grossman, E., Yeger, G., Peleg, E., Shabtay, Z., Shamiss, A., Sharabi, Y. (https://doi.org/10.1038/ajh.2008.218>
45. 2006) Metabolic syndrome, inflammation and atherosclerosis. Vasc. Health Risk Manag. 2, 145-152.
< , R., Bolego, C., Poli, A., Cignarella, A. (https://doi.org/10.2147/vhrm.2006.2.2.145>
46. 2009) Evaluation of the chronic complications of diabetes in a high fructose diet in rats. Indian J. Biochem. Biophys. 46, 66-72.
, J., Iyer, A., Brown, L. (
47. 2009) Cardiac fibroblast: at the heart of myocardial remodeling. Pharmacol. Ther. 123, 255-278.
< , K. E., Turner, N. A. (https://doi.org/10.1016/j.pharmthera.2009.05.002>
48. 2013) Does oestradiol attenuate the damaging effects of a fructose-rich diet on cardiac Akt/endothelial nitric oxide synthase signalling? Br. J. Nutr. 109, 1940-1948.
< , S., Tepavcevic, S., Zakula, Z., Milosavljevic, T., Stojiljkovic, M., Popovic, M., Stankovic, A., Koricanac, G. (https://doi.org/10.1017/S0007114512004114>
49. 2006) Angiotensin II: a key factor in the inflammatory and fibrotic response in kidney diseases. Nephrol. Dial. Transplant. 1, 16-20.
< , M., Ruperez, M., Esteban, V., Rodriguez-Vita, J., Sanchez-Lopez, E., Carvajal, G., Egido, J. (https://doi.org/10.1093/ndt/gfi265>
50. 2010) Effects of 17β-estradiol replacement on the apoptotic effects caused by ovariectomy in the rat hippocampus. Life Sci. 86, 832-838.
< , S., Ureshino, R. P., Pereira, R. T., Luna, M. S., Pires de Oliveira, M., Yamanouye, N., Godinho, R. O., Smaili, S. S., Porto, C. S., Abdalla, F. M. (https://doi.org/10.1016/j.lfs.2010.04.002>
51. 2007) Effect of PPAR-γ agonist on adiponectin levels in the metabolic syndrome: lessons from the high fructose fed rat model. Am. J. Hypertens. 20, 206-210.
< , Y., Oron-Herman, M., Kamari, Y., Avni, I., Peleg, E., Shabatay, Z., Grossman, E., Shamiss, A. (https://doi.org/10.1016/j.amjhyper.2006.08.002>
52. 2006) Inflammation and insulin resistance. J. Clin. Invest. 116, 1793-1801.
< , S. E., Lee, J., Goldfine, A. B. (https://doi.org/10.1172/JCI29069>
53. 2002) Matrix metalloproteinases: regulation and dysregulation in the failing heart. Circ. Res. 90, 520-530.
< , F.G. (https://doi.org/10.1161/01.RES.0000013290.12884.A3>
54. 2007) Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function. Physiol. Rev. 87, 1285-1342.
< , F. G. (https://doi.org/10.1152/physrev.00012.2007>
55. 2010) Metabolic effects of fructose and the worldwide increase in obesity. Physiol. Rev. 90, 23-46.
< , L., Le, K. A. (https://doi.org/10.1152/physrev.00019.2009>
56. 2004) Tissue inhibitor of metalloproteinase-1 and matrix metalloproteinase-9 levels in patients with hypertension relationship to tissue Doppler indices of diastolic relaxation. Am. J. Hypertens. 17, 770-774.
, M. H., Nadar, S. K., MacFadyen, R. J., Lip, G. Y. (
57. 2001) Diabetes mellitus enhances vascular matrix metalloproteinase activity: role of oxidative stress. Circ. Res. 88, 1291-1298.
< , S., Matsushite, H., Li, W., Glassford, A. J., Asagami, T., Lee, K. H., Harrison, D. G., Tsao, P. S. (https://doi.org/10.1161/hh1201.092042>
58. 2001) Estrogen prevents the lipopolysaccharide-induced inflammatory response in microglia. J. Neurosci. 21, 1809-1818.
< , E., Bonincontro, C., Pollio, G., Sala, A., Vaippiani, S., Nardi, F., Brusadelli, A., Viviani, B., Ciana, P., Maggi, A. (https://doi.org/10.1523/JNEUROSCI.21-06-01809.2001>
59. 2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ. Res. 92, 827-839.
< , R., Nagase, H. (https://doi.org/10.1161/01.RES.0000070112.80711.3D>
60. 2008) Angiotensin II-induced skeletal muscle insulin resistance mediated by NF-κB activation via NADPH oxidase. Am. J. Physiol. Endocrinol. Metab. 294, E345-352.
< , Y., Sowers, J. R., Clark, S. E., Li, W., Ferrario, C. M., Stump, C. S. (https://doi.org/10.1152/ajpendo.00456.2007>
61. 2004) Estrogen attenuates nuclear factorkappa B activation induced by transient cerebral ischemia. Brain Res. 1008, 147-154.
< , Y., Yang, S., Liu, R., Perez, E., Yi, K. D., Koulen, P., Simpkins, J. W. (https://doi.org/10.1016/j.brainres.2004.02.019>
62. 2005) Gender differences in rat aortic smooth muscle cell matrix metalloproteinase-9. J. Am. Coll. Surg. 201, 398-404.
< , D. T., Ford, J. W., Ailawadi, G., Pearce, C. G., Sinha, I., Eagleton, M. J., Henke, P. K., Stanley, J. C., Upchurch, G. J. (https://doi.org/10.1016/j.jamcollsurg.2005.04.002>
63. 2012) Estrogen modulates NFκB signaling by enhancing IκBα levels and blocking p65 binding at the promoters of inflammatory genes via estrogen receptor-β. PLos One 7, e36890.
< , D., Oparil, S., Yu, H., Gong, K., Feng, W., Black, J., Chen, YF, Nozell, S. (https://doi.org/10.1371/journal.pone.0036890>
64. 2011) Impairment of cardiac insulin signaling in fructose-fed ovariectomized female Wistar rats. Eur. J. Nutr. 50, 543-551.
< , Z., Koricanac, G., Tepavcevic, S., Stoiljkovic, M., Milosavljevic, T., Isenovic, E. R. (https://doi.org/10.1007/s00394-010-0161-4>