Fol. Biol. 2015, 61, 233-240

https://doi.org/10.14712/fb2015061060233

Oestradiol Treatment Counteracts the Effect of Fructose-Rich Diet on Matrix Metalloproteinase 9 Expression and NFκB Activation

M. Bundalo1, M. Zivkovic1, T. Culafic2, M. Stojiljkovic2, G. Koricanac2, Aleksandra Stankovic1

1Laboratory for Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
2Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia

Received January 2015
Accepted September 2015

References

1. Axelsen, L. N., Lademann, J. B., Petersen, J. S., Holstein- Rathlou, N. H., Ploug, T., Prats, C., Pedersen, H. D., Kjølbye A. L. (2010) Cardiac and metabolic changes in long-term high fructose-fat fed rats with severe obesity and extensive intramyocardial lipid accumulation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298, R1560-R1570. <https://doi.org/10.1152/ajpregu.00392.2009>
2. Bode, W., Maskos, K. (2003) Structural basis of the matrix metalloproteinases and their physiological inhibitors, the tissue inhibitors of metalloproteinases. Biol. Chem. 384, 863-872. <https://doi.org/10.1515/BC.2003.097>
3. Bond, M., Fabunmi, R. P., Baker, A. H., Newby, A. C. (1998) Synergistic upregulation of matrix metalloproteinase-9 by growth factors and inflammatory cytokines: an absolute requirement for transcription factor NF-κB. FEBS Lett. 435, 29-34. <https://doi.org/10.1016/S0014-5793(98)01034-5>
4. Bond, M., Chase, A., Baker, A., Newby, A. (2001) Inhibition of transcription factor NFkB reduces matrix metalloproteinase- 1, -3, and -9 production by vascular smooth muscle cells. Cardiovasc. Res. 50, 556-565. <https://doi.org/10.1016/S0008-6363(01)00220-6>
5. Browatzki, M., Larsen, D., Pfeiffer, C. A., Gehrhe, S. G., Schmidt, J., Kranzhofer, A., Katus, H. A., Kranzhofer, R. (1995) Angiotensin II stimulates matrix metalloproteinase secretion in human vascular smooth muscle cells via nuclear factor-κB and activator protein 1 in a redox-sensitive manner. J. Vasc. Res. 42, 415-23. <https://doi.org/10.1159/000087451>
6. Bundalo, M., Zivkovic, M., Tepavcevic, S., Culafic, T., Koricanac, G., Stankovic, A. (2015) Fructose-rich diet-induced changes in the expression of the renin angiotensin system molecules in the heart of ovariectomized female rats could be reversed by estradiol. Horm. Metab. Res. 47, 521-527.
7. Cai, D., Yuan, M., Frantz, D. F., Melendez, P. A., Hansen, L., Lee, J., Shoelson, S. E. (2005) Local and systemic insulin resistance resulting from hepatic activation of IKK-β and NF-κB. Nat. Med. 11, 183-190. <https://doi.org/10.1038/nm1166>
8. Cannizzo, B., Lujan, A., Estrella, N., Lembo, C., Cruzado, M., Castro, C. (2012) Insulin resistance promotes early atherosclerosis via increased proinflammatory proteins and oxidative stress in fructose fed ApoE-KO mice. Exp. Diabetes 2012, 941304.
9. Chiao, Y. A., Ramirez, T. A., Zamilpa, R., Okoronkwo, S. M., Dai, Q., Zhang, J., Jin, Y. F., Lindsey, M. L. (2012) Matrix metalloproteinase-9 deletion attenuates myocardial fibrosis and diastolic dysfunction in ageing mice. Cardiovasc. Res. 96, 444-455. <https://doi.org/10.1093/cvr/cvs275>
10. Cicero, A. F., Derosa, G., Manca, M., Bove, M., Borghi, C., Gaddi, A. V. (2007) Vascular remodeling and prothrombotic markers in subjects affected by familial combined hyperlipidemia and/or metabolic syndrome in primary prevention for cardiovascular disease. Endothelium 14, 193-198. <https://doi.org/10.1080/10623320701606731>
11. Cohn, J. N., Ferrari, R., Sharpe, N. (2000) Cardiac remodelling – concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling. J. Am. Coll. Cardiol. 35, 569-82. <https://doi.org/10.1016/S0735-1097(99)00630-0>
12. Dai, S., McNeil, J. H. (1995) Fructose-induced hypertension in rats is concentration- and duration-dependent. J. Pharmacol. Toxicol. Methods 33, 101-107. <https://doi.org/10.1016/1056-8719(94)00063-A>
13. Dekker, M. J., Su, Q., Baker, C., Rutledge, A. C., Adeli, K. (2010) Fructose: a highly lipogenic nutrient implicated in insulin resistance, hepatic steatosis, and the metabolic syndrome. Am. J. Physiol. Endocrinol. Metab. 299, E685-694. <https://doi.org/10.1152/ajpendo.00283.2010>
14. Dollery, C. M., McEwan, J. R., Henney, A. M. (1995) Matrix metalloproteinases and cardiovascular disease. Circ. Res. 77, 863-868. <https://doi.org/10.1161/01.RES.77.5.863>
15. Eckel, R. H., Grundy, S. M., Zimmet, P. Z. (2005) The metabolic syndrome. Lancet 365, 1415-1428. <https://doi.org/10.1016/S0140-6736(05)66378-7>
16. Ferroni, P., Basili, S., Masrtini, F., Cardarello, C. M., Ceci, F., Di Franco, M., Bertazzoni, G., Gazzaniga, P. P., Alessandri, C. (2003) Serum metalloproteinase-9 levels in patients with coronary artery disease: a novel marker of inflammation. J. Investig. Med. 51, 295-300. <https://doi.org/10.1177/108155890305100517>
17. Gioia, M., Monaco, S., Van Den Steen, P. E., Sbardella, D., Grasso, G., Marini, S., Overall, C. M., Opdenakker, G., Colleta, M. (2009) The collagen binding domain of gelatinase A modulates degradation of collagen IV by gelatinase B. J. Mol. Biol. 386, 419-434. <https://doi.org/10.1016/j.jmb.2008.12.021>
18. Goncalves, F. M., Jacob-Ferreira, A., Gomes, V., Casella-Filho, A., Chagas, A., Marcaccini, A., Gerlach, R., Tanus- Santos, J. (2009) Increased circulating levels of matrix metalloproteinase (MMP)-8, MMP-9, and proinflammatory markers in patients with metabolic syndrome. Clin. Chim. Acta. 403, 173-177. <https://doi.org/10.1016/j.cca.2009.02.013>
19. Grundy, S. M., Brewer, H. B., Cleeman, J. I., Smith, S. C., Lenfant, C. (2004) Definition of metabolic syndrome: Report of the National Heart, Lung, and Blood Institute/ American Heart Association conference on scientific issues related to definition. Arterioscler. Thromb. Vasc. Biol. 24, e13-18.
20. Grundy, S. M. (2007) Metabolic syndrome: a multiplex cardiovascular risk factor. J. Clin. Endocrinol. Metab. 92, 399-404. <https://doi.org/10.1210/jc.2006-0513>
21. Guo, R., Yang, L., Wang, H., Liu, B., Wang, L. (2008) Angiotensin II induces matrix metalloproteinase-9 expression via a nuclear factor-κB-dependent pathway in vascular smooth muscle cells. Regul. Pept. 147, 37-44. <https://doi.org/10.1016/j.regpep.2007.12.005>
22. Isomaa, B., Almgren, P., Tuomi, T., Forsén, B., Lahti, K., Nissén, M., Taskinen, M.R., Groop, L. (2001) Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care 24, 683-689. <https://doi.org/10.2337/diacare.24.4.683>
23. Jiang, B., Li, D., Deng, Y., Teng, F., Chen, H., Wu, W., Liu, X., Guo, D. A. (2013) Salvianolic acid A, a novel matrix metalloproteinase- 9 inhibitor, prevents cardiac remodeling in spontaneously hypertensive rats. PLoS One 8, e59621. <https://doi.org/10.1371/journal.pone.0059621>
24. Kamide, K., Rakugi, H., Higaki, J., Okamura, A., Nagai, M., Moriguchi, K., Ohishi, M., Satoh, N., Tuck, M. L., Ogihara, T. (2002) The renin-angiotensin and adrenergic nervous system in cardiac hypertrophy in fructose-fed rats. Am. J. Hypertens. 15, 66-71. <https://doi.org/10.1016/S0895-7061(01)02232-4>
25. Kim, J. M., Heo, H. S., Ha, Y. M., Ye, B. H., Lee, E. K., Choi, Y. J., Yu, B. P., Chung, H. Y. (2012) Mechanism of Ang II involvement in activation of NF-κB through phosphorylation of p65 during aging. Age 34, 11-25. <https://doi.org/10.1007/s11357-011-9207-7>
26. Kobayashi, R., Nagano, M., Nakamura, F., Higaki, J., Fujioka, Y., Ikegami, H., Mikami, H., Kawaguchi, N., Onishi, S., Ogihara, T. (1993) Role of angiotensin II in high fructoseinduced left ventricular hypertrophy in rats. Hypertension 21, 1051-1055. <https://doi.org/10.1161/01.HYP.21.6.1051>
27. Koricanac, G., Milosavljevic, T., Stojiljkovic, M., Zakula, Z., Tepavcevic, S., Ribarac-Stepic, N., Isenovic, E. R. (2009) Impact of estradiol on insulin signaling in the rat heart. Cell Biochem. Funct. 27, 102-110. <https://doi.org/10.1002/cbf.1542>
28. Koricanac, G., Djordjević, A., Žakula, Z., Vojnović-Milutinović, D., Tepavčević, S., Veličković, N., Milosavljević, T., Stojiljković, M., Romić, S., Matić, G. (2013) Gender modulates development of the metabolic syndrome phenotype in fructose fed rats. Arch. Biol. Sci. 65, 455-464. <https://doi.org/10.2298/ABS1302455K>
29. Kranzhofer, R., Schmidt, J., Pfeiffer, C. A., Hagl, S., Libby, P., Kubler, W. (1999) Angiotensin induces inflammatory activation of human vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 19, 1623-1629. <https://doi.org/10.1161/01.ATV.19.7.1623>
30. Lee, S. W., Song, K. E., Shin, D. S., Ahn, S. M., Ha, E. S., Kim, D. J., Nam, M. S., Lee, K. W. (2005) Alteration in peripheral blood levels of TIMP-1, MMP-2 and MMP-9 in patients with type-2 diabetes. Diabetes Res. Clin. Pract. 69, 175-179. <https://doi.org/10.1016/j.diabres.2004.12.010>
31. Li, H., Simon, H., Bocan, T. M., Peterson, J. T. (2000) MMP/ TIMP expression in spontaneously hypertensive heart failure rats: the effect of ACE- and MMP-inhibition. Cardiovasc. Res. 46, 298-306. <https://doi.org/10.1016/S0008-6363(00)00028-6>
32. Lindsay, M. M., Maxwell, P., Dunn, F. G. (2002) TIMP-1: a marker of left ventricular diastolic dysfunction and fibrosis in hypertension. Hypertension 40, 136-141. <https://doi.org/10.1161/01.HYP.0000024573.17293.23>
33. Livak, K. J., Schmittgen, T. D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-ΔΔC(T)) method. Methods 25, 402-408. <https://doi.org/10.1006/meth.2001.1262>
34. Lopes, B., Gonzales, A., Diez, J. (2004) Role of matrix metalloproteinases in hypertension-associated cardiac fibrosis. Curr. Opin. Nephrol. Hypertens. 13, 197-204.
35. Lu, J., Ji, J., Meng, H., Wang, D., Jiang, B., Liu, L., Randell, E., Adeli, K., Meng, Q. H. (2013) The protective effect and underlying mechanism of metformin on neointima formation in fructose-induced insulin resistant rats. Cardiovasc. Diabetol. 12, 58. <https://doi.org/10.1186/1475-2840-12-58>
36. Marui, N., Offermann, M. K., Swerlick, R., Kunsch, C., Rosen, C. A., Ahmad, M., Alexander, R. W., Medford, R. M. (1993) Vascular cell adhesion molecule-1 (VCAM-1) gene transcription and expression are regulated trough an antioxidant-sensitive mechanism in human vascular endothelial cells. J. Clin. Invest. 92, 1866-1874. <https://doi.org/10.1172/JCI116778>
37. Miksztowicz, V., Muzzio, M. L., Royer, M., Prada, M., Wikinski, R., Schreier, L., Berg, G. (2008) Increased plasma activity of metalloproteinase 2 in women with metabolic syndrome. Metabolism 57, 1493-1496. <https://doi.org/10.1016/j.metabol.2008.06.001>
38. Moon, S. K., Cha, B. Y., Kim, C. H. (2004) ERK1/2 mediates TNF-α-induced matrix metalloproteinase-9 expression in human vascular smooth muscle cells via the regulation of NF-κB and AP-1: involvement of the RAS dependent pathway. J. Cell. Physiol. 198, 417-427. <https://doi.org/10.1002/jcp.10435>
39. Mukheriee, R., Mingoia, J. T., Bruce, J. A., Austin, J. S., Stroud, R. E., Escobar, G. P., MaClister, D. M., Allen, C. M., Alfonso-Jaume, M. A., Fini, M. E., Lovett, D. H., Spinale, F. G. (2006) Selective spatiotemporal induction of matrix metalloproteinase-2 and matrix metalloproteinase-9 transcription after myocardial infarction. Am. J. Physiol. Heart. Circ. Physiol. 291, H2216-2228. <https://doi.org/10.1152/ajpheart.01343.2005>
40. Newby, A. C. (2005) Dual role of matrix metalloproteinases (matrixins) in intimal thickening and atherosclerotic plaque rupture. Physiol. Rev. 85, 1-31. <https://doi.org/10.1152/physrev.00048.2003>
41. Okada, M., Kikuzuki, R., Harada, T., Hori, Y., Yamawaki, H., Hara, Y. (2008) Captopril attenuates matrix metalloproteinase-2 and -9 in monocrotaline-induced right ventricular hypertrophy in rats. J. Pharmacol. Sci. 108, 487-494. <https://doi.org/10.1254/jphs.08174FP>
42. Okada, M., Harada, T., Kikuzuki, R., Hori, Y., Yamawaki, H., Hara, Y. (2009) Effects of telmisatran on right ventricular remodeling induced by monocrotaline in rats. J. Pharmacol. Sci. 111, 193-200. <https://doi.org/10.1254/jphs.09112FP>
43. Okada, M., Yamawaki, H., Hara, Y. (2010) Angiotensin II enhances interleukin-1β induced MMP-9 secretion in adult rat cardiac fibroblasts. J. Vet. Med. Sci. 72, 735-739. <https://doi.org/10.1292/jvms.09-0582>
44. Oron-Herman, M., Kamari, Y., Grossman, E., Yeger, G., Peleg, E., Shabtay, Z., Shamiss, A., Sharabi, Y. (2008) Metabolic syndrome: comparison of the two commonly used animal models. Am. J. Hypertens. 21, 1018-1022. <https://doi.org/10.1038/ajh.2008.218>
45. Paoletti, R., Bolego, C., Poli, A., Cignarella, A. (2006) Metabolic syndrome, inflammation and atherosclerosis. Vasc. Health Risk Manag. 2, 145-152. <https://doi.org/10.2147/vhrm.2006.2.2.145>
46. Patel, J., Iyer, A., Brown, L. (2009) Evaluation of the chronic complications of diabetes in a high fructose diet in rats. Indian J. Biochem. Biophys. 46, 66-72.
47. Porter, K. E., Turner, N. A. (2009) Cardiac fibroblast: at the heart of myocardial remodeling. Pharmacol. Ther. 123, 255-278. <https://doi.org/10.1016/j.pharmthera.2009.05.002>
48. Romic, S., Tepavcevic, S., Zakula, Z., Milosavljevic, T., Stojiljkovic, M., Popovic, M., Stankovic, A., Koricanac, G. (2013) Does oestradiol attenuate the damaging effects of a fructose-rich diet on cardiac Akt/endothelial nitric oxide synthase signalling? Br. J. Nutr. 109, 1940-1948. <https://doi.org/10.1017/S0007114512004114>
49. Ruiz-Ortega, M., Ruperez, M., Esteban, V., Rodriguez-Vita, J., Sanchez-Lopez, E., Carvajal, G., Egido, J. (2006) Angiotensin II: a key factor in the inflammatory and fibrotic response in kidney diseases. Nephrol. Dial. Transplant. 1, 16-20. <https://doi.org/10.1093/ndt/gfi265>
50. Sales, S., Ureshino, R. P., Pereira, R. T., Luna, M. S., Pires de Oliveira, M., Yamanouye, N., Godinho, R. O., Smaili, S. S., Porto, C. S., Abdalla, F. M. (2010) Effects of 17β-estradiol replacement on the apoptotic effects caused by ovariectomy in the rat hippocampus. Life Sci. 86, 832-838. <https://doi.org/10.1016/j.lfs.2010.04.002>
51. Sharabi, Y., Oron-Herman, M., Kamari, Y., Avni, I., Peleg, E., Shabatay, Z., Grossman, E., Shamiss, A. (2007) Effect of PPAR-γ agonist on adiponectin levels in the metabolic syndrome: lessons from the high fructose fed rat model. Am. J. Hypertens. 20, 206-210. <https://doi.org/10.1016/j.amjhyper.2006.08.002>
52. Shoelson, S. E., Lee, J., Goldfine, A. B. (2006) Inflammation and insulin resistance. J. Clin. Invest. 116, 1793-1801. <https://doi.org/10.1172/JCI29069>
53. Spinale, F.G. (2002) Matrix metalloproteinases: regulation and dysregulation in the failing heart. Circ. Res. 90, 520-530. <https://doi.org/10.1161/01.RES.0000013290.12884.A3>
54. Spinale, F. G. (2007) Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function. Physiol. Rev. 87, 1285-1342. <https://doi.org/10.1152/physrev.00012.2007>
55. Tappy, L., Le, K. A. (2010) Metabolic effects of fructose and the worldwide increase in obesity. Physiol. Rev. 90, 23-46. <https://doi.org/10.1152/physrev.00019.2009>
56. Tayebjee, M. H., Nadar, S. K., MacFadyen, R. J., Lip, G. Y. (2004) Tissue inhibitor of metalloproteinase-1 and matrix metalloproteinase-9 levels in patients with hypertension relationship to tissue Doppler indices of diastolic relaxation. Am. J. Hypertens. 17, 770-774.
57. Uemura, S., Matsushite, H., Li, W., Glassford, A. J., Asagami, T., Lee, K. H., Harrison, D. G., Tsao, P. S. (2001) Diabetes mellitus enhances vascular matrix metalloproteinase activity: role of oxidative stress. Circ. Res. 88, 1291-1298. <https://doi.org/10.1161/hh1201.092042>
58. Vegeto, E., Bonincontro, C., Pollio, G., Sala, A., Vaippiani, S., Nardi, F., Brusadelli, A., Viviani, B., Ciana, P., Maggi, A. (2001) Estrogen prevents the lipopolysaccharide-induced inflammatory response in microglia. J. Neurosci. 21, 1809-1818. <https://doi.org/10.1523/JNEUROSCI.21-06-01809.2001>
59. Visse, R., Nagase, H. (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ. Res. 92, 827-839. <https://doi.org/10.1161/01.RES.0000070112.80711.3D>
60. Wei, Y., Sowers, J. R., Clark, S. E., Li, W., Ferrario, C. M., Stump, C. S. (2008) Angiotensin II-induced skeletal muscle insulin resistance mediated by NF-κB activation via NADPH oxidase. Am. J. Physiol. Endocrinol. Metab. 294, E345-352. <https://doi.org/10.1152/ajpendo.00456.2007>
61. Wen, Y., Yang, S., Liu, R., Perez, E., Yi, K. D., Koulen, P., Simpkins, J. W. (2004) Estrogen attenuates nuclear factorkappa B activation induced by transient cerebral ischemia. Brain Res. 1008, 147-154. <https://doi.org/10.1016/j.brainres.2004.02.019>
62. Woodrum, D. T., Ford, J. W., Ailawadi, G., Pearce, C. G., Sinha, I., Eagleton, M. J., Henke, P. K., Stanley, J. C., Upchurch, G. J. (2005) Gender differences in rat aortic smooth muscle cell matrix metalloproteinase-9. J. Am. Coll. Surg. 201, 398-404. <https://doi.org/10.1016/j.jamcollsurg.2005.04.002>
63. Xing, D., Oparil, S., Yu, H., Gong, K., Feng, W., Black, J., Chen, YF, Nozell, S. (2012) Estrogen modulates NFκB signaling by enhancing IκBα levels and blocking p65 binding at the promoters of inflammatory genes via estrogen receptor-β. PLos One 7, e36890. <https://doi.org/10.1371/journal.pone.0036890>
64. Zakula, Z., Koricanac, G., Tepavcevic, S., Stoiljkovic, M., Milosavljevic, T., Isenovic, E. R. (2011) Impairment of cardiac insulin signaling in fructose-fed ovariectomized female Wistar rats. Eur. J. Nutr. 50, 543-551. <https://doi.org/10.1007/s00394-010-0161-4>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Archive