Fol. Biol. 2016, 62, 15-25

https://doi.org/10.14712/fb2016062010015

Pig Brain Mitochondria as a Biological Model for Study of Mitochondrial Respiration

Zdeněk Fišar, J. Hroudová

Department of Psychiatry, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czech Republic

Received August 2015
Accepted January 2016

Oxidative phosphorylation is a key process of intracellular energy transfer by which mitochondria produce ATP. Isolated mitochondria serve as a biological model for understanding the mitochondrial respiration control, effects of various biologically active substances, and pathophysiology of mitochondrial diseases. The aim of our study was to evaluate pig brain mitochondria as a proper biological model for investigation of activity of the mitochondrial electron transport chain. Oxygen consumption rates of isolated pig brain mitochondria were measured using high-resolution respirometry. Mitochondrial respiration of crude mitochondrial fraction, mitochondria purified in sucrose gradient, and mitochondria purified in Percoll gradient were assayed as a function of storage time. Oxygen flux and various mitochondrial respiratory control ratios were not changed within two days of mitochondria storage on ice. Leak respiration was found higher and Complex I-linked respiration lower in purified mitochondria compared to the crude mitochondrial fraction. Damage to both outer and inner mitochondrial membrane caused by the isolation procedure was the greatest after purification in a sucrose gradient. We confirmed that pig brain mitochondria can serve as a biological model for investigation of mitochondrial respiration. The advantage of this biological model is the stability of respiratory parameters for more than 48 h and the possibility to isolate large amounts of mitochondria from specific brain areas without the need to kill laboratory animals. We suggest the use of high-resolution respirometry of pig brain mitochondria for research of the neuroprotective effects and/or mitochondrial toxicity of new medical drugs.

Funding

The work was supported by Charles University in Prague, project PRVOUK-P26/LF1/4, and by the Ministry of Health of the Czech Republic, grants No. AZV 15-28967A and No. AZV 15-28616A.

References

36 live references