Fol. Biol. 2016, 62, 53-66
https://doi.org/10.14712/fb2016062020053
Effect of Simvastatin, Coenzyme Q10, Resveratrol, Acetylcysteine and Acetylcarnitine on Mitochondrial Respiration
References
1. 2003) Bioenergetic approaches for neuroprotection in Parkinson’s disease. Ann. Neurol. 53, S39-S47.
< , M. F. (https://doi.org/10.1002/ana.10479>
2. 2007) The antioxidant role of coenzyme Q. Mitochondrion 7, S41-S50.
< , M., Brismar, K., Dallner, G. (https://doi.org/10.1016/j.mito.2007.02.006>
3. 2013) The promise of N-acetylcysteine in neuropsychiatry. Trends Pharmacol. Sci. 34, 167-177.
< , M., Malhi, G. S., Gray, L. J., Dean, O. M. (https://doi.org/10.1016/j.tips.2013.01.001>
4. 2000) The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol. 1, 11-21.
< , M. J., Lipp, P., Bootman, M. D. (https://doi.org/10.1038/35036035>
5. 2015) Metabolic effects of resveratrol: addressing the controversies. Cell Mol. Life Sci. 72, 1473-1488.
< , J. L., Chung, J. H. (https://doi.org/10.1007/s00018-014-1808-8>
6. 2011) What is a relevant statin concentration in cell experiments claiming pleiotropic effects? Br. J. Clin. Pharmacol. 72, 164-165.
< , L., Lindh, J. D., Bergman, P. (https://doi.org/10.1111/j.1365-2125.2011.03907.x>
7. 2011) Assessing mitochondrial dysfunction in cells. Biochem. J. 435, 297-312.
< , M. D., Nicholls, D. G. (https://doi.org/10.1042/BJ20110162>
8. 2003) The relationship between free and total calcium concentrations in the matrix of liver and brain mitochondria. J. Biol. Chem. 278, 19062-19070.
< , S., Nicholls, D. G. (https://doi.org/10.1074/jbc.M212661200>
9. 2013) Mitochondrial diseases of the brain. Free Radic. Biol. Med. 63, 1-29.
< , R. K., Flint Beal, M. (https://doi.org/10.1016/j.freeradbiomed.2013.03.018>
10. 1999) The mitochondrial permeability transition pore and its role in cell death. Biochem. J. 341, 233-249.
< , M. (https://doi.org/10.1042/bj3410233>
11. 2011) N-acetylcysteine in psychiatry: current therapeutic evidence and potential mechanisms of action. J. Psychiatry Neurosci. 36, 78-86.
< , O., Giorlando, F., Berk, M. (https://doi.org/10.1503/jpn.100057>
12. 2015) Clinical trials of N-acetylcysteine in psychiatry and neurology: a systematic review. Neurosci. Biobehav. Rev. 55, 294-321.
< , Slattery, J., Kumar, N., Delhey, L., Berk, M., Dean, O., Spielholz, C., Frye, R. (https://doi.org/10.1016/j.neubiorev.2015.04.015>
13. 2010) Coenzyme Q10 and statin-induced mitochondrial dysfunction. Ochsner J. 10, 16-21.
, R., Lavie, C., Andrews, S. (
14. 2013) Putative neuroprotective agents in neuropsychiatric disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry 42, 135-145.
< , S., Maes, M., Anderson, G., Dean, O. M., Moylan, S., Berk, M. (https://doi.org/10.1016/j.pnpbp.2012.11.007>
15. 2010) Inhibition of monoamine oxidase activity by cannabinoids. Naunyn Schmiedebergs Arch. Pharmacol. 381, 563-572.
< , Z. (https://doi.org/10.1007/s00210-010-0517-6>
16. 2010) Intracellular signalling pathways and mood disorders. Folia Biol. (Praha) 56, 135-148.
, Z., Hroudová, J. (
17. 2014) Cannabinoid-induced changes in respiration of brain mitochondria. Toxicol. Lett. 231, 62-71.
< , Z., Singh, N., Hroudová, J. (https://doi.org/10.1016/j.toxlet.2014.09.002>
18. 1997) Total N-acetylcysteine levels are elevated in the plasma of patients with chronic renal failure. Anal. Lett. 30, 1823-1831.
< , D. H., Bostom, A. G. (https://doi.org/10.1080/00032719708001700>
19. 2000) Biological effects of resveratrol. Life Sci. 66, 663-673.
< , L. (https://doi.org/10.1016/S0024-3205(99)00410-5>
20. 2012) Pharmacological actions of statins: a critical appraisal in the management of cancer. Pharmacol. Rev. 64, 102-146.
< , P., Proto, M. C., Gangemi, G., Malfitano, A. M., Ciaglia, E., Pisanti, S., Santoro, A., Laezza, C., Bifulco, M. (https://doi.org/10.1124/pr.111.004994>
21. 2014) Functional role of mitochondrial respiratory supercomplexes. Biochim. Biophys. Acta 1837, 427-443.
< , M. L., Lenaz, G. (https://doi.org/10.1016/j.bbabio.2013.11.002>
22. 2007) Mechanism of inhibition of bovine F1-ATPase by resveratrol and related polyphenols. Proc. Natl. Acad. Sci. USA 104, 13632-13637.
< , J. R., Montgomery, M. G., Leslie, A. G., Walker, J. E. (https://doi.org/10.1073/pnas.0706290104>
23. Gnaiger, E., Kuznetsov, A. V., Schneeberger, S., Seiler, R., Brandacher, G., Steurer, W., Margreiter, R. (2000) Mitochondria in the cold. In: Life in the Cold, eds. Heldmaier, G., Klingenspor, M., pp. 431-442, Springer, New York.
24. Gnaiger, E. (2014) Mitochondrial Pathways and Respiratory Control. An Introduction to OXPHOS Analysis. 4th ed. Mitochondr Physiol Network 19.12. OROBOROS MiPNet Publications, Innsbruck.
25. 2008) Statin adverse effects: a review of the literature and evidence for a mitochondrial mechanism. Am. J. Cardiovasc. Drugs 8, 373-418.
< , B. A., Evans, M. A. (https://doi.org/10.2165/0129784-200808060-00004>
26. 2001) Purification of a crude mitochondrial fraction by density-gradient centrifugation. Curr. Protoc. Cell Biol. 4, 3.4., 3.4.1-3.4.22.
, J. M. (
27. 2014) Coenzyme Q10 as a therapy for mitochondrial disease. Int. J. Biochem. Cell Biol. 49, 105-111.
< , I. P. (https://doi.org/10.1016/j.biocel.2014.01.020>
28. 2011) Phase I randomized, double-blind pilot study of micronized resveratrol (SRT501) in patients with hepatic metastases ‒ safety, pharmacokinetics, and pharmacodynamics. Cancer Prev. Res. (Phila) 4, 1419-1425.
< , L. M., Berry, D. P., Elliott, P. J., Jacobson, E. W., Hoffmann, E., Hegarty, B., Brown, K., Steward, W. P., Gescher, A. J. (https://doi.org/10.1158/1940-6207.CAPR-11-0148>
29. 2012) In vitro inhibition of mitochondrial respiratory rate by antidepressants. Toxicol. Lett. 213, 345-352.
< , J., Fišar, Z. (https://doi.org/10.1016/j.toxlet.2012.07.017>
30. Hudson, S., Tabet, N. (2003) Acetyl-L-carnitine for dementia. Cochrane Database Syst. Rev. (2), CD003158.
31. 2015) Reducing Aβ load and τ phosphorylation: emerging perspective for treating Alzheimer›s disease. Eur. J. Pharmacol. 764, 571-581.
< , J., Khan, A. (https://doi.org/10.1016/j.ejphar.2015.07.043>
32. 2009) Different effects of the ABCG2 c.421C>A SNP on the pharmacokinetics of fluvastatin, pravastatin and simvastatin. Pharmacogenomics 10, 1617-1624.
< , J. E., Pasanen, M. K., Neuvonen, P. J., Niemi, M. (https://doi.org/10.2217/pgs.09.85>
33. 2015) Oxygraph assay of cytochrome c oxidase activity: chemical O2 background correction. Mitochondr. Physiol. Network 06.06(09), 1-4.
, A. V., Gnaiger, E. (
34. 1986) Brain α-ketoglutarate dehydrogenase complex: kinetic properties, regional distribution, and effects of inhibitors. J. Neurochem. 47, 1376-1386.
< , J. C., Cooper, A. J. (https://doi.org/10.1111/j.1471-4159.1986.tb00768.x>
35. 1988) Pyruvate dehydrogenase complex is inhibited in calcium-loaded cerebrocortical mitochondria. Neurochem. Res. 13, 1043-1048.
< , J. C., DiLorenzo, J. C., Sheu, K. F. (https://doi.org/10.1007/BF00973148>
36. 2014) Statins exert neuroprotection on cerebral ischemia independent of their lipid-lowering action: the potential molecular mechanisms. Eur. Rev. Med. Pharmacol. Sci. 18, 1113-1126.
, Q., Zhuang, Q. K., Yang, J. N., Zhang, Y. Y. (
37. 2015) The regulation of neuronal mitochondrial metabolism by calcium. J. Physiol. 593, 3447-3462.
< , I., Rueda, C. B., Pardo, B., Szabadkai, G., Duchen, M. R., Satrustegui, J. (https://doi.org/10.1113/JP270254>
38. 1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265-275.
< , O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J. (https://doi.org/10.1016/S0021-9258(19)52451-6>
39. 2012) New drug targets in depression: inflammatory, cell-mediated immune, oxidative and nitrosative stress, mitochondrial, antioxidant, and neuroprogressive pathways. And new drug candidates ‒ Nrf2 activators and GSK-3 inhibitors. Inflammopharmacology 20, 127-150.
< , M., Fišar, Z., Medina, M., Scapagnini, G., Nowak, G., Berk, M. (https://doi.org/10.1007/s10787-011-0111-7>
40. 2014) Statins in neurological disorders: an overview and update. Pharmacol. Res. 88, 74-83.
< , A. M., Marasco, G., Proto, M. C., Laezza, C., Gazzerro, P., Bifulco, M. (https://doi.org/10.1016/j.phrs.2014.06.007>
41. 1989) The role of Ca2+ ions in the regulation of intramitochondrial metabolism and energy production in rat heart. Mol. Cell Biochem. 89, 121-125.
, J. G., Denton, R. M. (
42. 2008) Quantification of carnitine and acylcarnitines in biological matrices by HPLC electrospray ionization-mass spectrometry. Clin. Chem. 54, 1451-1462.
< , P. E., Stoll, M. S., Ingalls, S. T., Yang, S., Kerner, J., Hoppel, C. L. (https://doi.org/10.1373/clinchem.2007.099226>
43. 2007) Mitochondrial impairment by PPAR agonists and statins identified via immunocaptured OXPHOS complex activities and respiration. Toxicol. Appl. Pharmacol. 223, 277-287.
< , S., Dykens, J. A., Bernal, A., Capaldi, R. A., Will, Y. (https://doi.org/10.1016/j.taap.2007.06.003>
44. 2009) Mitochondrial calcium function and dysfunction in the central nervous system. Biochim. Biophys. Acta 1787, 1416-1424.
< , D. G. (https://doi.org/10.1016/j.bbabio.2009.03.010>
45. 2001) Mitochondria and degenerative disorders. Am. J. Med. Genet. 106, 27-36.
< , M., Schapira, A. H. (https://doi.org/10.1002/ajmg.1425>
46. 2013) Concentration dependent effect of calcium on brain mitochondrial bioenergetics and oxidative stress parameters. Front. Neuroenergetics 5, 10.
< , J. D., Nukala, V. N., Sullivan, P. G. (https://doi.org/10.3389/fnene.2013.00010>
47. 2014) N-acetylcysteine amide confers neuroprotection, improves bioenergetics and behavioral outcome following TBI. Exp. Neurol. 257, 106-113.
< , J. D., Readnower, R. D., Patel, S. P., Yonutas, H. M., Pauly, J. R., Goldstein, G. A., Rabchevsky, A. G., Sullivan, P. G. (https://doi.org/10.1016/j.expneurol.2014.04.020>
48. 2012) Statins lower calcium-induced oxidative stress in isolated mitochondria. Hum. Exp. Toxicol. 31, 355-363.
< , A., Parihar, M. S., Zenebe, W. J., Ghafourifar, P. (https://doi.org/10.1177/0960327111429141>
49. 2012) Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell 148, 421-433.
< , S. J., Ahmad, F., Philp, A., Baar, K., Williams, T., Luo, H., Ke, H., Rehmann, H., Taussig, R., Brown, A. L., Kim, M. K., Beaven, M. A., Burgin, A. B., Manganiello, V., Chung, J. H. (https://doi.org/10.1016/j.cell.2012.01.017>
50. 2014) N-acetylcysteine amide preserves mitochondrial bioenergetics and improves functional recovery following spinal trauma. Exp. Neurol. 257, 95-105.
< , S. P., Sullivan, P. G., Pandya, J. D., Goldstein, G. A., VanRooyen, J. L., Yonutas, H. M., Eldahan, K. C., Morehouse, J., Magnuson, D. S., Rabchevsky, A. G. (https://doi.org/10.1016/j.expneurol.2014.04.026>
51. 2012) High-resolution respirometry. OXPHOS protocols for human cells and permeabilized fibres from small biopsies of human muscle. Methods Mol. Biol. 810, 25-58.
< , D., Gnaiger, E. (https://doi.org/10.1007/978-1-61779-382-0_3>
52. 2003) Thyroid hormones in the rat amygdala as common targets for antidepressant drugs, mood stabilizers, and sleep deprivation. Biol. Psychiatry 54, 1049-1059.
< , G., Broedel, O., Eravci, M., Stoltenburg-Didinger, G., Plueckhan, H., Fuxius, S., Meinhold, H., Baumgartner, A. (https://doi.org/10.1016/S0006-3223(03)00414-1>
53. 2010) Coenzyme Q and mitochondrial disease. Dev. Disabil. Res. Rev. 16, 183-188.
< , C. M., Hirano, M. (https://doi.org/10.1002/ddrr.108>
54. 2009) Recent view of coenzyme Q. Chem. Listy 103, 32-39. (in Czech)
, H., Vokurková, M. (
55. 2008) Metabolic adaptations through the PGC-1α and SIRT1 pathways. FEBS Lett. 582, 46-53.
< , J. T., Lerin, C., Gerhart-Hines, Z., Puigserver, P. (https://doi.org/10.1016/j.febslet.2007.11.034>
56. 2009) Mitochondria in the elderly: Is acetylcarnitine a rejuvenator? Adv. Drug Deliv. Rev. 61, 1332-1342.
< , M. G., Lemieux, H., Hoppel, C. L. (https://doi.org/10.1016/j.addr.2009.06.009>
57. 2012) The antioxidant N-acetylcysteine prevents the mitochondrial fragmentation induced by soluble amyloid-β peptide oligomers. Neurodegener. Dis. 10, 34-37.
< , C. D., Adasme, T., Hidalgo, C., Paula-Lima, A. C. (https://doi.org/10.1159/000334901>
58. 1992) CHELATOR: an improved method for computing metal ion concentrations in physiological solutions. Biotechniques 12, 870-874, 876-879.
, T. J., Visser, G. J., Flik, G., Theuvenet, A. P. (
59. 2010) Therapeutic prospects for mitochondrial disease. Trends Mol. Med. 16, 268-276.
< , E. A., DiMauro, S., Hirano, M., Gilkerson, R. W. (https://doi.org/10.1016/j.molmed.2010.04.007>
60. 2015) Cannabinoid-induced changes in the activity of electron transport chain complexes of brain mitochondria. J. Mol. Neurosci. 56, 926-931.
< , N., Hroudová, J., Fišar, Z. (https://doi.org/10.1007/s12031-015-0545-2>
61. 2012) Muscle mitochondrial metabolism and calcium signaling impairment in patients treated with statins. Toxicol. Appl. Pharmacol. 259, 263-268.
< , P., Fabre, O., Bordenave, S., Hillaire-Buys, D., Raynaud De Mauverger, E., Lacampagne, A., Mercier, J. (https://doi.org/10.1016/j.taap.2012.01.008>
62. 2006) Brain cholesterol synthesis in mice is affected by high dose of simvastatin but not of pravastatin. J. Pharmacol. Exp. Ther. 316, 1146-1152.
< , K. M., Rentsch, K. M., Gutteck, U., Heverin, M., Olin, M., Andersson, U., von Eckardstein, A., Björkhem, I., Lütjohann, D. (https://doi.org/10.1124/jpet.105.094136>
63. 1980) Inhibition of oxidative phosphorylation in ascites tumor mitochondria and cells by intramitochondrial Ca2+. J. Biol. Chem. 255, 2457-2464.
< , A., Lehninger, A. L. (https://doi.org/10.1016/S0021-9258(19)85914-8>
64. 2014) A review of current evidence for acetyll- carnitine in the treatment of depression. J. Psychiatr. Res. 53, 30-37.
< , S. M., Han, C., Lee, S. J., Patkar, A. A., Masand, P. S., Pae, C. U. (https://doi.org/10.1016/j.jpsychires.2014.02.005>
65. Whittaker, V. P. (1969) The synaptosome. In: Handbook of Neurochemistry Vol. II Structural Neurochemistry, ed. Lajtha, A., pp. 327-364, Plenum Press, New York-London.
66. 2009) Isolation of mitochondria-associated membranes and mitochondria from animal tissues and cells. Nat. Protoc. 4, 1582-1590.
< , M. R., Giorgi, C., Lebiedzinska, M., Duszynski, J., Pinton, P. (https://doi.org/10.1038/nprot.2009.151>
67. 2014) Statins and neuroprotection: basic pharmacology needed. Mol. Neurobiol. 50, 214-220.
< , W. G., Müller, W. E., Eckert, G. P. (https://doi.org/10.1007/s12035-014-8647-3>