Fol. Biol. 2016, 62, 53-66
https://doi.org/10.14712/fb2016062020053
Effect of Simvastatin, Coenzyme Q10, Resveratrol, Acetylcysteine and Acetylcarnitine on Mitochondrial Respiration
References
1. , M. F. (2003) Bioenergetic approaches for neuroprotection in Parkinson’s disease. Ann. Neurol. 53, S39-S47.
<https://doi.org/10.1002/ana.10479>
2. , M., Brismar, K., Dallner, G. (2007) The antioxidant role of coenzyme Q. Mitochondrion 7, S41-S50.
<https://doi.org/10.1016/j.mito.2007.02.006>
3. , M., Malhi, G. S., Gray, L. J., Dean, O. M. (2013) The promise of N-acetylcysteine in neuropsychiatry. Trends Pharmacol. Sci. 34, 167-177.
<https://doi.org/10.1016/j.tips.2013.01.001>
4. , M. J., Lipp, P., Bootman, M. D. (2000) The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol. 1, 11-21.
<https://doi.org/10.1038/35036035>
5. , J. L., Chung, J. H. (2015) Metabolic effects of resveratrol: addressing the controversies. Cell Mol. Life Sci. 72, 1473-1488.
<https://doi.org/10.1007/s00018-014-1808-8>
6. , L., Lindh, J. D., Bergman, P. (2011) What is a relevant statin concentration in cell experiments claiming pleiotropic effects? Br. J. Clin. Pharmacol. 72, 164-165.
<https://doi.org/10.1111/j.1365-2125.2011.03907.x>
7. , M. D., Nicholls, D. G. (2011) Assessing mitochondrial dysfunction in cells. Biochem. J. 435, 297-312.
<https://doi.org/10.1042/BJ20110162>
8. , S., Nicholls, D. G. (2003) The relationship between free and total calcium concentrations in the matrix of liver and brain mitochondria. J. Biol. Chem. 278, 19062-19070.
<https://doi.org/10.1074/jbc.M212661200>
9. , R. K., Flint Beal, M. (2013) Mitochondrial diseases of the brain. Free Radic. Biol. Med. 63, 1-29.
<https://doi.org/10.1016/j.freeradbiomed.2013.03.018>
10. , M. (1999) The mitochondrial permeability transition pore and its role in cell death. Biochem. J. 341, 233-249.
<https://doi.org/10.1042/bj3410233>
11. , O., Giorlando, F., Berk, M. (2011) N-acetylcysteine in psychiatry: current therapeutic evidence and potential mechanisms of action. J. Psychiatry Neurosci. 36, 78-86.
<https://doi.org/10.1503/jpn.100057>
12. , Slattery, J., Kumar, N., Delhey, L., Berk, M., Dean, O., Spielholz, C., Frye, R. (2015) Clinical trials of N-acetylcysteine in psychiatry and neurology: a systematic review. Neurosci. Biobehav. Rev. 55, 294-321.
<https://doi.org/10.1016/j.neubiorev.2015.04.015>
13. , R., Lavie, C., Andrews, S. (2010) Coenzyme Q10 and statin-induced mitochondrial dysfunction. Ochsner J. 10, 16-21.
14. , S., Maes, M., Anderson, G., Dean, O. M., Moylan, S., Berk, M. (2013) Putative neuroprotective agents in neuropsychiatric disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry 42, 135-145.
<https://doi.org/10.1016/j.pnpbp.2012.11.007>
15. , Z. (2010) Inhibition of monoamine oxidase activity by cannabinoids. Naunyn Schmiedebergs Arch. Pharmacol. 381, 563-572.
<https://doi.org/10.1007/s00210-010-0517-6>
16. , Z., Hroudová, J. (2010) Intracellular signalling pathways and mood disorders. Folia Biol. (Praha) 56, 135-148.
17. , Z., Singh, N., Hroudová, J. (2014) Cannabinoid-induced changes in respiration of brain mitochondria. Toxicol. Lett. 231, 62-71.
<https://doi.org/10.1016/j.toxlet.2014.09.002>
18. , D. H., Bostom, A. G. (1997) Total N-acetylcysteine levels are elevated in the plasma of patients with chronic renal failure. Anal. Lett. 30, 1823-1831.
<https://doi.org/10.1080/00032719708001700>
19. , L. (2000) Biological effects of resveratrol. Life Sci. 66, 663-673.
<https://doi.org/10.1016/S0024-3205(99)00410-5>
20. , P., Proto, M. C., Gangemi, G., Malfitano, A. M., Ciaglia, E., Pisanti, S., Santoro, A., Laezza, C., Bifulco, M. (2012) Pharmacological actions of statins: a critical appraisal in the management of cancer. Pharmacol. Rev. 64, 102-146.
<https://doi.org/10.1124/pr.111.004994>
21. , M. L., Lenaz, G. (2014) Functional role of mitochondrial respiratory supercomplexes. Biochim. Biophys. Acta 1837, 427-443.
<https://doi.org/10.1016/j.bbabio.2013.11.002>
22. , J. R., Montgomery, M. G., Leslie, A. G., Walker, J. E. (2007) Mechanism of inhibition of bovine F1-ATPase by resveratrol and related polyphenols. Proc. Natl. Acad. Sci. USA 104, 13632-13637.
<https://doi.org/10.1073/pnas.0706290104>
23. Gnaiger, E., Kuznetsov, A. V., Schneeberger, S., Seiler, R., Brandacher, G., Steurer, W., Margreiter, R. (2000) Mitochondria in the cold. In: Life in the Cold, eds. Heldmaier, G., Klingenspor, M., pp. 431-442, Springer, New York.
24. Gnaiger, E. (2014) Mitochondrial Pathways and Respiratory Control. An Introduction to OXPHOS Analysis. 4th ed. Mitochondr Physiol Network 19.12. OROBOROS MiPNet Publications, Innsbruck.
25. , B. A., Evans, M. A. (2008) Statin adverse effects: a review of the literature and evidence for a mitochondrial mechanism. Am. J. Cardiovasc. Drugs 8, 373-418.
<https://doi.org/10.2165/0129784-200808060-00004>
26. , J. M. (2001) Purification of a crude mitochondrial fraction by density-gradient centrifugation. Curr. Protoc. Cell Biol. 4, 3.4., 3.4.1-3.4.22.
27. , I. P. (2014) Coenzyme Q10 as a therapy for mitochondrial disease. Int. J. Biochem. Cell Biol. 49, 105-111.
<https://doi.org/10.1016/j.biocel.2014.01.020>
28. , L. M., Berry, D. P., Elliott, P. J., Jacobson, E. W., Hoffmann, E., Hegarty, B., Brown, K., Steward, W. P., Gescher, A. J. (2011) Phase I randomized, double-blind pilot study of micronized resveratrol (SRT501) in patients with hepatic metastases ‒ safety, pharmacokinetics, and pharmacodynamics. Cancer Prev. Res. (Phila) 4, 1419-1425.
<https://doi.org/10.1158/1940-6207.CAPR-11-0148>
29. , J., Fišar, Z. (2012) In vitro inhibition of mitochondrial respiratory rate by antidepressants. Toxicol. Lett. 213, 345-352.
<https://doi.org/10.1016/j.toxlet.2012.07.017>
30. Hudson, S., Tabet, N. (2003) Acetyl-L-carnitine for dementia. Cochrane Database Syst. Rev. (2), CD003158.
31. , J., Khan, A. (2015) Reducing Aβ load and τ phosphorylation: emerging perspective for treating Alzheimer›s disease. Eur. J. Pharmacol. 764, 571-581.
<https://doi.org/10.1016/j.ejphar.2015.07.043>
32. , J. E., Pasanen, M. K., Neuvonen, P. J., Niemi, M. (2009) Different effects of the ABCG2 c.421C>A SNP on the pharmacokinetics of fluvastatin, pravastatin and simvastatin. Pharmacogenomics 10, 1617-1624.
<https://doi.org/10.2217/pgs.09.85>
33. , A. V., Gnaiger, E. (2015) Oxygraph assay of cytochrome c oxidase activity: chemical O2 background correction. Mitochondr. Physiol. Network 06.06(09), 1-4.
34. , J. C., Cooper, A. J. (1986) Brain α-ketoglutarate dehydrogenase complex: kinetic properties, regional distribution, and effects of inhibitors. J. Neurochem. 47, 1376-1386.
<https://doi.org/10.1111/j.1471-4159.1986.tb00768.x>
35. , J. C., DiLorenzo, J. C., Sheu, K. F. (1988) Pyruvate dehydrogenase complex is inhibited in calcium-loaded cerebrocortical mitochondria. Neurochem. Res. 13, 1043-1048.
<https://doi.org/10.1007/BF00973148>
36. , Q., Zhuang, Q. K., Yang, J. N., Zhang, Y. Y. (2014) Statins exert neuroprotection on cerebral ischemia independent of their lipid-lowering action: the potential molecular mechanisms. Eur. Rev. Med. Pharmacol. Sci. 18, 1113-1126.
37. , I., Rueda, C. B., Pardo, B., Szabadkai, G., Duchen, M. R., Satrustegui, J. (2015) The regulation of neuronal mitochondrial metabolism by calcium. J. Physiol. 593, 3447-3462.
<https://doi.org/10.1113/JP270254>
38. , O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J. (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265-275.
<https://doi.org/10.1016/S0021-9258(19)52451-6>
39. , M., Fišar, Z., Medina, M., Scapagnini, G., Nowak, G., Berk, M. (2012) New drug targets in depression: inflammatory, cell-mediated immune, oxidative and nitrosative stress, mitochondrial, antioxidant, and neuroprogressive pathways. And new drug candidates ‒ Nrf2 activators and GSK-3 inhibitors. Inflammopharmacology 20, 127-150.
<https://doi.org/10.1007/s10787-011-0111-7>
40. , A. M., Marasco, G., Proto, M. C., Laezza, C., Gazzerro, P., Bifulco, M. (2014) Statins in neurological disorders: an overview and update. Pharmacol. Res. 88, 74-83.
<https://doi.org/10.1016/j.phrs.2014.06.007>
41. , J. G., Denton, R. M. (1989) The role of Ca2+ ions in the regulation of intramitochondrial metabolism and energy production in rat heart. Mol. Cell Biochem. 89, 121-125.
42. , P. E., Stoll, M. S., Ingalls, S. T., Yang, S., Kerner, J., Hoppel, C. L. (2008) Quantification of carnitine and acylcarnitines in biological matrices by HPLC electrospray ionization-mass spectrometry. Clin. Chem. 54, 1451-1462.
<https://doi.org/10.1373/clinchem.2007.099226>
43. , S., Dykens, J. A., Bernal, A., Capaldi, R. A., Will, Y. (2007) Mitochondrial impairment by PPAR agonists and statins identified via immunocaptured OXPHOS complex activities and respiration. Toxicol. Appl. Pharmacol. 223, 277-287.
<https://doi.org/10.1016/j.taap.2007.06.003>
44. , D. G. (2009) Mitochondrial calcium function and dysfunction in the central nervous system. Biochim. Biophys. Acta 1787, 1416-1424.
<https://doi.org/10.1016/j.bbabio.2009.03.010>
45. , M., Schapira, A. H. (2001) Mitochondria and degenerative disorders. Am. J. Med. Genet. 106, 27-36.
<https://doi.org/10.1002/ajmg.1425>
46. , J. D., Nukala, V. N., Sullivan, P. G. (2013) Concentration dependent effect of calcium on brain mitochondrial bioenergetics and oxidative stress parameters. Front. Neuroenergetics 5, 10.
<https://doi.org/10.3389/fnene.2013.00010>
47. , J. D., Readnower, R. D., Patel, S. P., Yonutas, H. M., Pauly, J. R., Goldstein, G. A., Rabchevsky, A. G., Sullivan, P. G. (2014) N-acetylcysteine amide confers neuroprotection, improves bioenergetics and behavioral outcome following TBI. Exp. Neurol. 257, 106-113.
<https://doi.org/10.1016/j.expneurol.2014.04.020>
48. , A., Parihar, M. S., Zenebe, W. J., Ghafourifar, P. (2012) Statins lower calcium-induced oxidative stress in isolated mitochondria. Hum. Exp. Toxicol. 31, 355-363.
<https://doi.org/10.1177/0960327111429141>
49. , S. J., Ahmad, F., Philp, A., Baar, K., Williams, T., Luo, H., Ke, H., Rehmann, H., Taussig, R., Brown, A. L., Kim, M. K., Beaven, M. A., Burgin, A. B., Manganiello, V., Chung, J. H. (2012) Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell 148, 421-433.
<https://doi.org/10.1016/j.cell.2012.01.017>
50. , S. P., Sullivan, P. G., Pandya, J. D., Goldstein, G. A., VanRooyen, J. L., Yonutas, H. M., Eldahan, K. C., Morehouse, J., Magnuson, D. S., Rabchevsky, A. G. (2014) N-acetylcysteine amide preserves mitochondrial bioenergetics and improves functional recovery following spinal trauma. Exp. Neurol. 257, 95-105.
<https://doi.org/10.1016/j.expneurol.2014.04.026>
51. , D., Gnaiger, E. (2012) High-resolution respirometry. OXPHOS protocols for human cells and permeabilized fibres from small biopsies of human muscle. Methods Mol. Biol. 810, 25-58.
<https://doi.org/10.1007/978-1-61779-382-0_3>
52. , G., Broedel, O., Eravci, M., Stoltenburg-Didinger, G., Plueckhan, H., Fuxius, S., Meinhold, H., Baumgartner, A. (2003) Thyroid hormones in the rat amygdala as common targets for antidepressant drugs, mood stabilizers, and sleep deprivation. Biol. Psychiatry 54, 1049-1059.
<https://doi.org/10.1016/S0006-3223(03)00414-1>
53. , C. M., Hirano, M. (2010) Coenzyme Q and mitochondrial disease. Dev. Disabil. Res. Rev. 16, 183-188.
<https://doi.org/10.1002/ddrr.108>
54. , H., Vokurková, M. (2009) Recent view of coenzyme Q. Chem. Listy 103, 32-39. (in Czech)
55. , J. T., Lerin, C., Gerhart-Hines, Z., Puigserver, P. (2008) Metabolic adaptations through the PGC-1α and SIRT1 pathways. FEBS Lett. 582, 46-53.
<https://doi.org/10.1016/j.febslet.2007.11.034>
56. , M. G., Lemieux, H., Hoppel, C. L. (2009) Mitochondria in the elderly: Is acetylcarnitine a rejuvenator? Adv. Drug Deliv. Rev. 61, 1332-1342.
<https://doi.org/10.1016/j.addr.2009.06.009>
57. , C. D., Adasme, T., Hidalgo, C., Paula-Lima, A. C. (2012) The antioxidant N-acetylcysteine prevents the mitochondrial fragmentation induced by soluble amyloid-β peptide oligomers. Neurodegener. Dis. 10, 34-37.
<https://doi.org/10.1159/000334901>
58. , T. J., Visser, G. J., Flik, G., Theuvenet, A. P. (1992) CHELATOR: an improved method for computing metal ion concentrations in physiological solutions. Biotechniques 12, 870-874, 876-879.
59. , E. A., DiMauro, S., Hirano, M., Gilkerson, R. W. (2010) Therapeutic prospects for mitochondrial disease. Trends Mol. Med. 16, 268-276.
<https://doi.org/10.1016/j.molmed.2010.04.007>
60. , N., Hroudová, J., Fišar, Z. (2015) Cannabinoid-induced changes in the activity of electron transport chain complexes of brain mitochondria. J. Mol. Neurosci. 56, 926-931.
<https://doi.org/10.1007/s12031-015-0545-2>
61. , P., Fabre, O., Bordenave, S., Hillaire-Buys, D., Raynaud De Mauverger, E., Lacampagne, A., Mercier, J. (2012) Muscle mitochondrial metabolism and calcium signaling impairment in patients treated with statins. Toxicol. Appl. Pharmacol. 259, 263-268.
<https://doi.org/10.1016/j.taap.2012.01.008>
62. , K. M., Rentsch, K. M., Gutteck, U., Heverin, M., Olin, M., Andersson, U., von Eckardstein, A., Björkhem, I., Lütjohann, D. (2006) Brain cholesterol synthesis in mice is affected by high dose of simvastatin but not of pravastatin. J. Pharmacol. Exp. Ther. 316, 1146-1152.
<https://doi.org/10.1124/jpet.105.094136>
63. , A., Lehninger, A. L. (1980) Inhibition of oxidative phosphorylation in ascites tumor mitochondria and cells by intramitochondrial Ca2+. J. Biol. Chem. 255, 2457-2464.
<https://doi.org/10.1016/S0021-9258(19)85914-8>
64. , S. M., Han, C., Lee, S. J., Patkar, A. A., Masand, P. S., Pae, C. U. (2014) A review of current evidence for acetyll- carnitine in the treatment of depression. J. Psychiatr. Res. 53, 30-37.
<https://doi.org/10.1016/j.jpsychires.2014.02.005>
65. Whittaker, V. P. (1969) The synaptosome. In: Handbook of Neurochemistry Vol. II Structural Neurochemistry, ed. Lajtha, A., pp. 327-364, Plenum Press, New York-London.
66. , M. R., Giorgi, C., Lebiedzinska, M., Duszynski, J., Pinton, P. (2009) Isolation of mitochondria-associated membranes and mitochondria from animal tissues and cells. Nat. Protoc. 4, 1582-1590.
<https://doi.org/10.1038/nprot.2009.151>
67. , W. G., Müller, W. E., Eckert, G. P. (2014) Statins and neuroprotection: basic pharmacology needed. Mol. Neurobiol. 50, 214-220.
<https://doi.org/10.1007/s12035-014-8647-3>
