Fol. Biol. 2016, 62, 160-166

https://doi.org/10.14712/fb2016062040160

Mast Cells Might Have a Protective Role against the Development of Calcification and Hyalinisation in Severe Aortic Valve Stenosis

Aleksandra Milutinovic1, D. Petrovič1,2, M. Zorc1,2, O. Vraspir Porenta1, M. Arko1, A. Pleskovič3, A. Alibegovic4, R. Zorc-Pleskovic1

1University of Ljubljana, Faculty of Medicine, Institute of Histology and Embryology, Ljubljana, Slovenia
2MC Medicor, Ljubljana, Slovenia
3University Medical Centre of Ljubljana, Department of Internal Medicine, Ljubljana, Slovenia
4University of Ljubljana, Faculty of Medicine, Institute of Forensic Medicine, Ljubljana, Slovenia

Received September 2015
Accepted May 2016

References

1. Aikawa, E., Nahrendorf, M., Sosnovik, D., Lok, V. M., Jaffer, F. A., Aikawa, M., Weissleder, R. (2007) Multimodality molecular imaging identifies proteolytic and osteogenic activities in early aortic valve disease. Circulation 115, 377-386. <https://doi.org/10.1161/CIRCULATIONAHA.106.654913>
2. Bulfone-Paus, S., Paus, R. (2008) Osteopontin as a new player in mast cell biology. Eur. J. Immunol. 38, 338-341. <https://doi.org/10.1002/eji.200738131>
3. Chen, X. L., Tummala, P. E., Olbrych, M. T., Alexander, R. W., Medford, R. M. (1998) Angiotensin II induces monocyte chemoattractant protein-1 gene expression in rat vascular smooth muscle cells. Circ. Res. 83, 952-959. <https://doi.org/10.1161/01.RES.83.9.952>
4. Foris, G., Dezso, B., Medgyesi, G. A., Fust, G. (1983) Effect of angiotensin II on macrophage functions. Immunology 48, 529-535.
5. Freeman, R. V., Otto, C. M. (2005) Spectrum of calcific aortic valve disease pathogenesis, disease progression, and treatment strategies. Circulation 111, 3316-3326. <https://doi.org/10.1161/CIRCULATIONAHA.104.486738>
6. Galli, S. J., Nakae, S. (2003) Mast cells to the defense. Nat. Immunol. 4, 1160-1162. <https://doi.org/10.1038/ni1203-1160>
7. Hieb, V., Becker, M., Taube, C., Stassen, M. (2008) Advances in the understanding of mast cell function. Br. J. Haematol. 142, 683-694. <https://doi.org/10.1111/j.1365-2141.2008.07244.x>
8. Giachelli, C. M., Steitz, S. (2000) Osteopontin: a versatile regulator of inflammation and biomineralization. Matrix Biol. 19, 615-622. <https://doi.org/10.1016/S0945-053X(00)00108-6>
9. Helske, S., Lindstedt, K. A., Laine, M., Mäyränpää, M., Werkkala, K., Lommi, J., Turto, H., Kupari, M., Kovanen, P. T. (2004) Induction of local angiotensin II-producing systems in stenotic aortic valves. J. Am. Coll. Cardiol. 44, 1859-1866. <https://doi.org/10.1016/j.jacc.2004.07.054>
10. Helske, S., Syväranta, S., Kupari, M., Lappalainen, J., Laine, M., Lommi, J., Turto, H., Mäyränpää, M., Werkkala, K., Kovanen, P. T., Lindstedt, K. A. (2006) Possible role for mast cell-derived cathepsin G in the adverse remodelling of stenotic aortic valves. Eur. Heart J. 27, 1495-1504. <https://doi.org/10.1093/eurheartj/ehi706>
11. Helske, S., Kupari, M., Lindstedt, K. A., Kovanen, P. T. (2007) Aortic valve stenosis: an active atheroinflammatory process. Curr. Opin. Lipidol. 18, 483-491. <https://doi.org/10.1097/MOL.0b013e3282a66099>
12. Hjortnaes, J., Butcher, J., Figueiredo, J. L., Riccio, M., Kohler, R. H., Kozloff, K. M., Weissleder, R., Aikawa, E. (2010) Arterial and aortic valve calcification inversely correlates with osteoporotic bone remodelling: a role for inflammation. Eur. Heart J. 31, 1975-1984. <https://doi.org/10.1093/eurheartj/ehq237>
13. Jian, B., Narula, N., Li, Q. Y., Mohler, E. R. 3rd, Levy, R. J. (2003) Progression of aortic valve stenosis: TGF-β1 is present in calcified aortic valve cusps and promotes aortic valve interstitial cell calcification via apoptosis. Ann. Thorac. Surg. 75, 457-465. <https://doi.org/10.1016/S0003-4975(02)04312-6>
14. Kwon, J. S., Kim, Y. S., Cho, A. S., Cho, H. H., Kim, J. S., Hong, M. H., Jeong, S. Y., Jeong, M. H., Cho, J. G., Park, J. C., Kang, J. C., Ahn, Y. (2011) The novel role of mast cells in the microenvironment of acute myocardial infarction. J. Mol. Cell. Cardiol. 50, 814-825. <https://doi.org/10.1016/j.yjmcc.2011.01.019>
15. Leopold, J. A. (2012) Cellular mechanisms of aortic valve calcification. Circ. Cardiovasc. Interv. 5, 605-614. <https://doi.org/10.1161/CIRCINTERVENTIONS.112.971028>
16. Mahler, G. J., Butcher, J. T. (2011) Inflammatory regulation of valvular remodeling: the good(?), the bad, and the ugly. Int. J. Inflam. 2011, 721419.
17. Mazzone, A., Epistolato, M. C., De Caterina, R., Storti, S., Vittorini, S., Sbrana, S., Gianetti, J., Bevilacqua, S., Glauber, M., Biagini, A., Tanganelli, P. (2004) Neoangiogenesis, T-lymphocyte infiltration, and heat shock protein-60 are biological hallmarks of an immunomediated inflammatory process in end-stage calcified aortic valve. J. Am. Coll. Cardiol. 43, 1670-1676. <https://doi.org/10.1016/j.jacc.2003.12.041>
18. Mohler, E. R. 3rd, Gannon, F., Reynolds, C., Zimmerman, R., Keane, M. G., Kaplan, F. S. (2001) Bone formation and inflammation in cardiac valves. Circulation 103, 1522-1528. <https://doi.org/10.1161/01.CIR.103.11.1522>
19. Novaro, G. M., Griffin, B. P. (2003) Calcific aortic stenosis: another face of atherosclerosis? Cleve. Clin. J. Med. 70, 471-477. <https://doi.org/10.3949/ccjm.70.5.471>
20. Olsson, M., Dalsgaard, C. J., Haegerstrand, A., Rosenqvist, M., Rydén, L., Nilsson, J. (1994) Accumulation of T lymphocytes and expression of interleukin-2 receptors in nonrheumatic stenotic aortic valves. J. Am. Coll. Cardiol. 23, 1162-1170. <https://doi.org/10.1016/0735-1097(94)90606-8>
21. Otto, C. M., Kuusisto, J., Reichenbach, D. D., Gown, A. M., O’Brien, K. D. (1994) Characterization of the early lesion in “degenerative” valvular aortic stenosis: histological and immunohistochemical studies. Circulation 90, 844-853. <https://doi.org/10.1161/01.CIR.90.2.844>
22. Parolari, A., Loardi, C., Mussoni, L., Cavalloti, L., Camera, M., Biglioli, P., Tremoli, E., Alamanni, F. (2009) Nonrheumatic calcific aortic stenosis: an overview from basic science to pharmacological prevention. Eur. J. Cardiothorac. Surg. 35, 493-504. <https://doi.org/10.1016/j.ejcts.2008.11.033>
23. Pleskovič, A., Vraspir-Porenta, O., Zorc-Pleskovič, R., Petrovič, D., Zorc, M., Milutinović, A. (2011) Deficiency of mast cells in coronary artery endarterectomy of male patients with type 2 diabetes. Cardiovasc. Diabetol. 10, 40. <https://doi.org/10.1186/1475-2840-10-40>
24. Rabkin, E., Aikawa, M., Stone, J. R., Fukumoto, Y., Libby, P., Schoen, F. J. (2001) Activated interstitial myofibroblasts express catabolic enzymes and mediate matrix remodeling in myxomatous heart valves. Circulation 104, 2525-2532. <https://doi.org/10.1161/hc4601.099489>
25. Shoen, F. J. (2008) Evolving concepts of cardiac valve dynamics: the continuum of development, functional structure, pathobiology and tissue engineering. Circulation 118, 1864-1880. <https://doi.org/10.1161/CIRCULATIONAHA.108.805911>
26. Sinkiewicz, W. (2002) Endogenous heparin – a protective marker in patients with myocardial infarction. Coron. Artery Dis. 13, 423-426.
27. Steiner, I., Krbal, L., Rozkoš, T., Harrer, J., Laco, J. (2012) Calcific aortic valve stenosis: immunohistochemical analysis of inflammatory infiltrate. Pathol. Res. Pract. 208, 231-234. <https://doi.org/10.1016/j.prp.2012.02.009>
28. Steitz, S. A , Speer, M. Y., McKee, M. D., Liaw, L., Almeida, M., Yang, H., Giachelli, C. M. (2002) Osteopontin inhibits mineral deposition and promotes regression of ectopic calcification. Am. J. Pathol. 161, 2035-2046. <https://doi.org/10.1016/S0002-9440(10)64482-3>
29. Thom, T., Haase, N., Rosamond, W., Howard, V. J., Rumsfeld, J., Manolio, T., Zheng, Z. J., Flegal, K., O’Donnell, C., Kittner, S., Lloyd-Jones, D., Goff, D. C. Jr, Hong, Y., Adams, R., Friday, G., Furie, K., Gorelick, P., Kissela, B., Marler, J., Meigs, J., Roger, V., Sidney, S., Sorlie, P., Steinberger, J., Wasserthiel-Smoller, S., Wilson, M., Wolf, P. (2006) American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics – 2006 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 113, e85-115. Erratum in: Circulation 113, e696. Circulation 114, e630.
30. Urb, M., Sheppard, D. C. (2012) The role of mast cells in defence against pathogens. PLoS Pathog. 8, e1002619. <https://doi.org/10.1371/journal.ppat.1002619>
31. Wallby, L., Janerot-Sjöberg, B., Steffensen, T., Broqvist, M. (2002) T lymphocyte infiltration in non-rheumatic aortic stenosis: a comparative descriptive study between tricuspid and bicuspid aortic valves. Heart 88, 348-351. <https://doi.org/10.1136/heart.88.4.348>
32. Wallby, L., Steffensen, T., Jonasson, L., Broqvist, M. (2013) Inflammatory characteristics of stenotic aortic valves: a comparison between rheumatic and nonrheumatic aortic stenosis. Cardiol. Res. Pract. 2013, 895215. <https://doi.org/10.1155/2013/895215>
33. Wylie-Sears, J., Aikawa, E., Levine, R. A., Yang, J. H., Bischoff, J. (2011) Mitral valve endothelial cells with osteogenic differentiation potential. Arterioscler. Thromb. Vasc. Biol. 31, 598-607. <https://doi.org/10.1161/ATVBAHA.110.216184>
34. Wypasek, E., Natorska, J., Grudzień, G., Filip, G., Sadowski, J., Undas, A. (2013) Mast cells in human stenotic aortic valves are associated with the severity of stenosis. Inflammation 36, 449-456. <https://doi.org/10.1007/s10753-012-9565-z>
35. Xu, J. M., Shi, G. P. (2012) Emerging role of mast cells and macrophages in cardiovascular and metabolic diseases. Endocr. Rev. 33, 71-108. <https://doi.org/10.1210/er.2011-0013>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Archive