Fol. Biol. 2016, 62, 167-174
https://doi.org/10.14712/fb2016062040167
Comparison of the Radiosensitizing Effect of ATR, ATM and DNA-PK Kinase Inhibitors on Cervical Carcinoma Cells
References
1. 2010) New insights into checkpoint kinase 1 in the DNA damage response signaling network. Clin. Cancer Res. 16, 376-383.
< , Y., Grant, S. (https://doi.org/10.1158/1078-0432.CCR-09-1029>
2. 2008) Radiosensitization of cervical cancer cells via double-strand DNA break repair inhibition. Gynecol. Oncol. 110, 93-98.
< , C. H. B., Kilgore, J., Lacoursiere, Y. D., Lee, C.M., Milash, B. A., Soisson, A. P., Zempolich, K. A. (https://doi.org/10.1016/j.ygyno.2007.08.073>
3. 2015) VE-821, an ATR inhibitor, causes radiosensitization in human tumor cells irradiated with high LET radiation. Radiat. Oncol. 10, 175.
< , H., Nakajima, N. I., Sunada, S., Lee, Y., Hirakawa, H., Yajima, H., Fujimori, A., Uesaka, M., Okayasu, R. (https://doi.org/10.1186/s13014-015-0464-y>
4. 2005) DNA damage-induced mitotic catastrophe is mediated by the Chk1-dependent mitotic exit DNA damage checkpoint. Proc. Natl. Acad. Sci. USA 102, 1065-1070.
< , X., Tran, T., Zhang, L., Hatcher, R., Zhang, P. (https://doi.org/10.1073/pnas.0409130102>
5. 2009) Cellular radiosensitivity: how much better do we understand it? Int. J. Radiat. Biol. 85, 1061-1081.
< , P., Lavin, M. F. (https://doi.org/10.3109/09553000903261263>
6. 2005) Differential regulation of surviving by p53 contributes to cell cycle dependent apoptosis. Cell Res. 15, 361-370.
< , Y., Wei, Y., Xiong, L., Yang, Y., Wu, J. R. (https://doi.org/10.1038/sj.cr.7290303>
7. 2011) Mitoxantrone in combination with a DNA-PK inhibitor: possible therapy of promyelocytic leukaemia resistant forms. Folia Biol. (Praha) 57, 200-205.
, V., Tichý, A., Řezáčová, M., Vávrová, J. (
8. 2013) DNA-dependent protein kinase and its inhibition in support of radiotherapy. Int. J. Radiat. Biol. 89, 416-423.
< , E., Tichy, A., Pejchal, J., Lukasova, E., Salovska, B., Vavrova, J. (https://doi.org/10.3109/09553002.2013.767993>
9. 2003) Clinical impact of ATR checkpoint signalling failure in humans. Cell Cycle 2, 194-195.
< , M., Jeggo, P. A. (https://doi.org/10.4161/cc.2.3.404>
10. 2011) Determinants of mitotic catastrophe on abrogation of the G2 DNA damage checkpoint by UCN-01. Mol. Cancer Ther. 10, 784-794.
< , K. F., Chen, Y., Ma, H. T., Chow, J. P., Poon, R. Y. (https://doi.org/10.1158/1535-7163.MCT-10-0809>
11. 2012) The novel ATR inhibitor VE-821 increases sensitivity of pancreatic cancer cells to radiation and chemotherapy. Cancer Biol. Ther. 13, 1072-1081.
< , R., Fokas, E., Reaper, P. M., Charlton, P. A., Pollard, J. R., Mckenna, W. G., Muschel, R. J., Brunner, T. B. (https://doi.org/10.4161/cbt.21093>
12. 2011) Selective killing of ATM- or p53-deficient cancer cells through inhibition of ATR. Nat. Chem. Biol. 7, 428-430.
< , P. M., Griffiths, M. R., Long, J. M., Charrier, J. D., Maccormick, S., Charlton, P. A., Golec, J. M., Pollard, J. R. (https://doi.org/10.1038/nchembio.573>
13. 1993) The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 75, 495-505.
< , M., Huibregtse, J. M., Vierstra, R. D., Howley, P. M. (https://doi.org/10.1016/0092-8674(93)90384-3>
14. 2011) Targeting the DNA double strand break repair machinery in prostate cancer. PLoS One 6, e20311.
< , F. S., Znojek, P., Fisher, A., Webster, M., Plummer, R., Gaughan, L., Smith, G. C., Leung, H. Y., Curtin, N. J., Robson, C. N. (https://doi.org/10.1371/journal.pone.0020311>
15. 2010) Inactivation of DNAdependent protein kinase leads to spindle disruption and mitotic catastrophe with attenuated checkpoint protein 2 phosphorylation in response to DNA damage. Cancer Res. 70, 3657-3666.
< , Z. F., Huang, B., Xu, Q. Z., Zhang, S. M., Fan, R., Liu, X. D., Wang, Y., Zhou, P. K. (https://doi.org/10.1158/0008-5472.CAN-09-3362>
16. 2001) Radiationinduced apoptosis and cell cycle progression in TP53-deficient human leukemia cell line HL-60. Neoplasma 48, 26-33.
, J., Marekova, M., Vokurkova, D. (
17. 2003) Caffeine induces a second wave of apoptosis after low dose-rate γ radiation of HL-60 cells. Radiat. Environ. Biophys. 42, 193-199.
< , J., Marekova, M., Vokurkova, D., Szkanderova, S., Psutka, J. (https://doi.org/10.1007/s00411-003-0209-4>
18. 2013) Inhibition of ATR kinase with the selective inhibitor VE-821 results in radiosensitization of cells of promyelocytic leukaemia (HL60). Radiat. Environ. Biophys. 52, 471-479.
< , J., Zarybnicka, L., Lukasova, E., Rezacova, M., Novotna, E., Sinkorova, Z., Tichy, A., Pejchal, J. (https://doi.org/10.1007/s00411-013-0486-5>
19. 2010) Prospects for the use of ATR inhibitors to treat cancer. Pharmaceuticals 3, 1311-1334.
< , J. M., Kaufmann, S. H. (https://doi.org/10.3390/ph3051311>
20. 2006) Preclinical evaluation of a potent novel DNAdependent protein kinase inhibitor NU7441. Cancer Res. 66, 5354-5362.
< , Y., Huw, D. T., Batey, M. A., Cowell, I. G., Richardson, C. J., Griffin, R. J., Calvert, A. H., Newell, D. R., Smith, G. C. M. (https://doi.org/10.1158/0008-5472.CAN-05-4275>