Fol. Biol. 2016, 62, 181-187
https://doi.org/10.14712/fb2016062050181
The Potential Role of Melatonin on Memory Function: Lessons from Rodent Studies
References
1. 2001) Ageindependent and dose-response effects of ethanol on spatial memory in rats. Alcohol 23, 167-175.
< , S. K., Ross, E. L., Swartzwelder, H. S. (https://doi.org/10.1016/S0741-8329(01)00127-6>
2. 2015) Melatonin attenuates D-galactose-induced memory impairment, neuroinflammation and neurodegeneration via RAGE/NF-KB/ JNK signaling pathway in aging mouse model. J. Pineal Res. 58, 71-85.
< , T., Badshah, H., Kim, T. H., Kim, M. O. (https://doi.org/10.1111/jpi.12194>
3. 2015) Chronic melatonin treatment prevents memory impairment induced by chronic sleep deprivation. Mol. Neurobiol. 53, 3439-3447.
< , K. H., Mayyas, F. A., Khabour, O. F., Bani Salama, F. M., Alhashimi, F. H., Mhaidat, N. M. (https://doi.org/10.1007/s12035-015-9286-z>
4. 2000) Melatonin, circadian rhythms and sleep. N. Engl. J. Med. 343, 1114-1116.
< , J. (https://doi.org/10.1056/NEJM200010123431510>
5. 2005a) Learning and memory deficits in rats induced by chronic thinner exposure are reversed by melatonin. J. Pineal Res. 39, 50-56.
< , G., Ozveren, F., Akdemir, I., Tuzcu, M., Yasar, A. (https://doi.org/10.1111/j.1600-079X.2005.00212.x>
6. 2005b) Comparison of the impact of melatonin on chronic ethanol-induced learning and memory impairment between young and aged rats. J. Pineal Res. 39, 346-52.
< , G., Yasar, A., Tuzcu, M. (https://doi.org/10.1111/j.1600-079X.2005.00257.x>
7. 2006) Melatonin as a cytoskeletal modulator; implications for cell physiology and disease. J. Pineal Res. 40, 1-6.
< , G. (https://doi.org/10.1111/j.1600-079X.2005.00282.x>
8. 2008) Excess protein synthesis in Drosophila fragile X mutants impairs long-term memory. Nat. Neurosci. 11, 1143-1145.
< , F. V., Bell, K., Cox, H., Broadie, K. S., Tully, T. (https://doi.org/10.1038/nn.2175>
9. 1997) Melatonin in humans. N. Engl. J. Med. 336, 186-195.
< , A. (https://doi.org/10.1056/NEJM199701163360306>
10. 2009) Effects of chronic administration of melatonin on spatial learning ability and long-term potentiation in lead-exposed and control rats. Biomed. Environ. Sci. 22, 70-75.
< , X. J., Wang, M., Chen, W. H., Zhu, D. M., She, J. Q., Ruan, D. Y. (https://doi.org/10.1016/S0895-3988(09)60025-8>
11. 2013) Long-term oral administration of melatonin improves spatial learning and memory and protects against cholinergic degeneration in middle-aged Ts65Dn mice, a model of Down syndrome. J. Pineal Res. 54, 346-358.
< , A., Martínez, P., García, S., Vidal, V., García, E., Flórez, J., Sanchez-Barceló, E. J., Martínez-Cué, C., Rueda, N. (https://doi.org/10.1111/jpi.12037>
12. 2002) Drosophila lacking dfmr1 activity show defects in circadian output and fail to maintain courtship interest. Neuron 34, 973-984.
< , T. C., Su, H. S., Mcbride, S. M. J., Yang, Z., Choi, C. H., Siwicki, K. K., Sehgal, A., Jongens, T. A. (https://doi.org/10.1016/S0896-6273(02)00724-9>
13. Dwivedi, S., Nagarajan, R., Hanif, K., Siddiqui, H. H., Nath, C., Shukla, R. (2013) Standardized extract of Bacopa monniera attenuates okadaic acid induced memory dysfunction in rats: effect on Nrf2 pathway. Evid. Based Complement. Alternat. Med. 2013: 294501.
<https://doi.org/10.1155/2013/294501>
14. 2006) Melatonin receptors in humans: biological role and clinical relevance. Biomed. Pharmacother. 60, 97-108.
< , C. (https://doi.org/10.1016/j.biopha.2006.01.002>
15. 2014) Neuroprotection of melatonin against lipopolysaccharide-induced Alzheimer’s disease in male albino rats. Med. J. Cairo Univ. 82, 109-119.
, N., Tork, O. M. (
16. 2016) Impaired memory and evidence of histopathology in CA1 pyramidal neurons through injection of Aβ1-42 peptides into the frontal cortices of rat. Basic Clin. Neurosci. 17, 31-41.
, M. J., Madjd, Z., Rasoolijazi, H., Saffarzadeh, F., Pirhajati, V., Aligholi, H., Janahmadi, M., Mehdizadeh, M. (
17. 2004) Melatonin alleviates behavioral deficits associated with apoptosis and cholinergic system dysfunction in the APP 695 transgenic mouse model of Alzheimer’s disease. J. Pineal Res. 37, 129-136.
< , Z., Chang, Y., Cheng, Y., Zhang, B. L., Qu, Z. W., Qin, C., Zhang, J. T. (https://doi.org/10.1111/j.1600-079X.2004.00144.x>
18. 2005) Effects of melatonin on oxidative stress and spatial memory impairment induced by acute ethanol treatment in rats. Physiol. Res. 54, 341-348.
< , S., Uysal, N., Acikgoz, O., Kayatekin, B. M., Sönmez, A., Kiray, M., Aksu, I., Güleçer, B., Topçu, A., Semin, I. (https://doi.org/10.33549/physiolres.930639>
19. 1974) In vitro formation of two new metabolites of melatonin. J. Biol. Chem. 249, 1311-1313.
< , F., Hayaishi, O., Tokuyama, T., Seno, S. (https://doi.org/10.1016/S0021-9258(19)42976-1>
20. 2002) A role for the Drosophila fragile X-related gene in circadian output. Curr. Biol. 12, 1331-1335.
< , S., Shimoda, M., Nishinokubi, I., Siomi, M. C., Okamura, M., Nakamura, A., Kobayashi, S., Ishida, N., Siomi, H. (https://doi.org/10.1016/S0960-9822(02)01036-9>
21. 2015) The potential role of melatonin on sleep deprivation-induced cognitive impairments: implication of FMRP on cognitive function. Neuroscience 301, 403-414.
< , K. J., Lee, E. J., Kim, M. K., Jeon, S. J., Choi, Y. Y., Shin, C. Y., Han, S. H. (https://doi.org/10.1016/j.neuroscience.2015.05.079>
22. 2003) Identification of the NF-E2-related factor-2-dependent genes conferring protection against oxidative stress in primary cortical astrocytes using oligonucleotide microarray analysis. J. Biol. Chem. 278, 12029-12038.
< , J., Calkins, M. J., Chan, K., Kan, Y. W., Johnson, J. A. (https://doi.org/10.1074/jbc.M211558200>
23. 2014) Light as a central modulator of circadian rhythms, sleep and affect. Nat. Rev. Neurosci. 15, 443-454.
< , T. A., Fernandez, D. C., Hattar, S. (https://doi.org/10.1038/nrn3743>
24. 1996) The melatonin receptor in the human brain: cloning experiments and distribution studies. Brain Res. Mol. Brain Res. 39, 117-126.
< , C., Pannacci, M., Nonno, R., Lucini, V., Franchini, F., Stankov, B. M. (https://doi.org/10.1016/0169-328X(96)00017-4>
25. 2005) Pharmacological rescue of synaptic plasticity, courtship behavior, and mushroom body defects in a Drosophila model of fragile X syndrome. Neuron 45, 753-764.
< , S. M. J., Choi, C. H., Wang, Y., Liebelt, D., Braunstein, E., Ferreiro, D., Sehgal, A., Siwicki, K. K., Dockendorff, T. C., Nguyen, H. T., Mcdonald, T. V., Jongens, T. A. (https://doi.org/10.1016/j.neuron.2005.01.038>
26. 2015) Evaluation of the role of melatonin in dietary restriction effects on spatial memory impairment induced by streptozotocin (STZ) in male rats. JAMSAT 1, 42-50.
, M., Zarifkar, A., Namavar, M. R. (
27. 1999) Melatonin secretion rhythm disorders in patients with senile dementia of Alzheimer’s type with disturbed sleep-waking. Biol. Psychiatry 45, 417-421.
< , K., Tozawa, T., Satoh, K., Matsumoto, Y., Hishikawa, Y., Okawa, M. (https://doi.org/10.1016/S0006-3223(97)00510-6>
28. 1996) Neural control of the pineal gland. Behav. Brain Res. 73, 125-130.
< , R. Y. (https://doi.org/10.1016/0166-4328(96)00083-6>
29. 2012) Effects of melatonin on memory and learning deficits induced by exposure to thinner. Neurophysiology 44, 42-48.
< , V. S., Kirichenko, S. V., Baydas, G., Nerush, O. P. (https://doi.org/10.1007/s11062-012-9265-1>
30. 2000) Identification of the melatonin binding site MT3 as quinine reductase 2. J. Biol. Rhythms 275, 31311-31317.
, O., Ferro, O., Coge, F., Beauverger, P., Henlin, J. M., Lefoulon, F., Fauchere, J. L., Delagrange, P., Canet, E., Boutin, J. A. (
31. 2015) Prophylactic melatonin significantly reduces Alzheimer’s neuropathology and associated cognitive deficits independent of antioxidant pathways in AβPPswe/PS1 mice. Mol. Neurodegener. 10, 27.
< , G., Delic, V., Bradshaw, P. C., Olcese, J. (https://doi.org/10.1186/s13024-015-0027-6>
32. 2015) Physiological levels of melatonin relate to cognitive function and depressive symptoms: the HEIJO-KYO cohort. J. Clin. Endocrinol. Metab. 100, 3090-3096.
< , K., Saeki, K., Iwamoto, J., Tone, N., Tanaka, K., Kataoka, H., Morikawa, M., Kurumatani, N. (https://doi.org/10.1210/jc.2015-1859>
33. 2009) Protection against cognitive deficits and markers of neurodegeneration by long-term oral administration of melatonin in a transgenic model of Alzheimer disease. J. Pineal Res. 47, 82-96.
< , J. M., Cao, C., Mori, T., Mamcarz, M. B., Maxwell, A., Runfeldt, M. J., Wang, L., Zhang, C., Lin, X., Zhang, G., Arendash, G. W. (https://doi.org/10.1111/j.1600-079X.2009.00692.x>
34. 2008) Physiological effects of melatonin: role of melatonin receptors and signal transduction pathways. Prog. Neurobiol. 85, 335-353.
< , S., Trakht, I., Srinivasan, V., Spence, D. W., Maestroni, G. J., Zisapel, N., Cardinali, D. P. (https://doi.org/10.1016/j.pneurobio.2008.04.001>
35. 2004) Cognitive effects of exogenous melatonin administration in elderly persons: a pilot study. Am. J. Geriatric Psychiatry 12, 432-43.
, J. S., Legoff, D. B., Ahmed, I., Goebert, D. (
36. Peng, C. (2015) Melatonin rescues synaptic/memory impairment by regulating the levels of c-fos in tg2576 mice. Alzheimer’s Dement. 11(Suppl.), 495.
37. 2012) The hormonal Zeitgeber melatonin: role as a circadian modulator in memory processing. Front. Mol. Neurosci. 5, 27.
< , O., Maronde, E. (https://doi.org/10.3389/fnmol.2012.00027>
38. 1993) Antioxidant capacity of melatonin: a novel action not requiring a receptor. Neuroendocrinol. Lett. 15, 103-116.
, R. J., Poeggeler, B., Tan, D. X., Chen, L. D., Manchester, L. C., Guerro, J. M. (
39. 1994) Cloning and characterization of a mammalian melatonin receptor that mediates reproductive and circadian responses. Neuron 13, 1177-1185.
< , S. M., Weaver, D. R., Ebisawa, T. (https://doi.org/10.1016/0896-6273(94)90055-8>
40. 1995) Molecular characterization of a second mammalian receptor expressed in human retina and brain. Proc. Natl. Acad. Sci. USA 92, 8734-8738.
< , S. M., Godson, C., Mahle, C. D., Weaver, D. R., Slaughenhaupt, S. A., Gusella, J. F. (https://doi.org/10.1073/pnas.92.19.8734>
41. 2014) Melatonin attenuates memory impairment, amyloid-β accumulation, and neurodegeneration in a rat model of sporadic Alzheimer’s disease. J. Alzheimers Dis. 47, 103-116.
< , E. A., Muraleva, N. A., Maksimova, K. Y., Kiseleva, E., Kolosova, N. G., Stefanova, N. A. (https://doi.org/10.3233/JAD-150161>
42. 2008) Carnosic acid, a catechol-type electrophilic compound, protects neurons both in vitro and in vivo through activation of the Keap1/Nrf2 pathway via S-alkylation of targeted cysteines on Keap1. J. Neurochem. 104, 1116-1131.
< , T., Kosaka, K., Itoh, K., Kobayashi, A., Yamamoto, M., Shimojo, Y., Kitajima, C., Cui, J., Kamins, J., Okamoto, S., Izumi, M., Shirasawa, T., Lipton, S. A. (https://doi.org/10.1111/j.1471-4159.2007.05039.x>
43. 2001) Cerebrovascular melatonin MT1-receptor alterations in patients with Alzheimer’s disease. Neurosci. Lett. 308, 9-12.
< , E., Olivieri, G., Brydon, L., Jockers, R., Krauchi, K., Wirz-Justice, A., Müller-Spahn, F. (https://doi.org/10.1016/S0304-3940(01)01967-X>
44. 2005) Reduced hippocampal MT2 melatonin receptor expression in Alzheimer’s disease. J. Pineal Res. 38, 10-16.
< , E., Ayoub, M. A., Ravid, R., Angeloni, D., Franchini, F., Meier, F., Eckert, A., Müller-Spahn, F., Jockers, R. (https://doi.org/10.1111/j.1600-079X.2004.00169.x>
45. 1990) Daily variation in the concentration of melatonin and 5-methoxytryptophol in the human pineal gland: effect of age and Alzheimer’s disease. Brain Res. 528, 170-174.
< , D. J., Vivien-Roels, B., Sparks, D. L., Hunsaker, J. C., Pévet, P., Ravid, D., Swaab, D. F. (https://doi.org/10.1016/0006-8993(90)90214-V>
46. 2014) Ergothioneine and melatonin attenuate oxidative stress and protect against learning and memory deficits in C57BL/6J mice treated with D-galactose. Free Radic. Res. 48, 1049-1060.
< , T. Y., Lin, H. C., Chen, C. L., Wu, J. H., Liao, J. W., Hu, M. L. (https://doi.org/10.3109/10715762.2014.920954>
47. 2012a) Alzheimer’s disease: focus on the neuroprotective role of melatonin. J. Neurol. Res. 2, 69-81.
, V., Lauterbach, E. C., Ahmad, A. H., Prasad, A. (
48. 2012b) Melatonin, insomnia and the use of melatonergic drugs. Journal of Endocrinology and Reproduction (JER) 16, 15-24.
, V., Zakaria, R., Othman, Z., Brzezinski, A. (
49. 2014) Mood disorders, sleep and circardian rhythm. Research and Advances in Psychiatry (RAP) 1, 12-19.
, V., De Berardis, D., Fornaro, M., Lopez-Munoz, F., Partonen, T., Zakaria, R. (
50. Swaab, D. F. (2003) Suprachiasmatic nucleus (SCN) and pineal gland. In: The Human Hypothalamus: Basic and Clinical Aspects – Part I: Nuclei of the Human Hypothalamus. Eds. Aminoff, M. J., Franpcois, B., Swaab, D. F. Handb. Clin. Neurol. 79, 63-125, Elsevier, Amsterdam.
51. 2013) Melatonin attenuates dexamethasone-induced spatial memory impairment and dexamethasone-induced reduction of synaptic protein expressions in the mouse brain. Neurochem. Int. 63, 482-491.
< , W., Ruksee, N., Mahanam, T., Govitrapong, P. (https://doi.org/10.1016/j.neuint.2013.08.011>
52. 2013) dCREB2-mediated enhancement of memory formation. J. Neurosci. 33, 7475-7487.
< , T. C. Jr., Zhang, J., Friedman, E. L., Jin, H., Gonzales, E. D., Zhou, H., Drier, D., Gerstner, J. R., Paulson, E. A., Fropf, R., Yin, J. C. (https://doi.org/10.1523/JNEUROSCI.4387-12.2013>
53. 1989) Localization and characterization of melatonin receptors in rodent brain by in vitro autoradiography. J. Neurosci. 9, 2581-2590.
< , D. R., Rivkees, S. A., Reppert, S. M. (https://doi.org/10.1523/JNEUROSCI.09-07-02581.1989>
54. 1998) The potential role of the transcription factor RZR/ROR as a mediator of nuclear melatonin signaling. Restor. Neurol. Neurosci. 12, 143-150.
, I., Missbach, M., Carlberg, C. (
55. 2003) Molecular changes underlying reduced pineal melatonin levels in Alzheimer disease: alterations in preclinical and clinical stages. J. Clin. Endocrinol. Metab. 88, 5898-5906.
< , Y. H., Feenstra, M. G., Zhou, J. N., Liu, R. Y., Toranõ, J. S., Van Kan, H. J., Fischer, D. F., Ravid, R., Swaab, D. F. (https://doi.org/10.1210/jc.2003-030833>
56. 2016) Melatonin pretreatment prevents isoflurane-induced cognitive dysfunction by modulating sleep-wake rhythm in mice. Brain Res. 634, 12-20.
< , T., Cui, Y., Chu, S., Song, J., Qian, Y., Ma, Z., Gu, X. (https://doi.org/10.1016/j.brainres.2015.10.036>
57. 2002) Improvement of the cholinergic function by melatonin in amnesic rats induced by amyloid β-peptide 25 ~ 35. Chinese Pharmacological Bulletin 3, 281-285.
, S. Y., Wei, W., Hong, Z. G., Chao, L., Hua, L. L., Yun, X. S. (
58. 2015) Evaluation of spatial memory and locomotor activity during hypercortisolism induced by the administration of dexamethasone in adult male rats. Brain Res. 1595, 43-50.
< , T., Gedikli, Ö., Yildirim, M. (https://doi.org/10.1016/j.brainres.2014.04.034>
59. 1994) Induction of a dominant negative CREB transgene specifically blocks long-term memory in Drosophila. Cell 79, 49-58.
< , J. C., Wallach, J. S., Del Vecchio, M., Wilder, E. L., Zhou, H., Quinn, W. G., Tully, T. (https://doi.org/10.1016/0092-8674(94)90399-9>
60. 1995) CREB as a memory modulator: induced expression of a dCREB2 activator isoform enhances long-term memory in Drosophila. Cell 81, 107-115.
< , J. C., Del Vecchio, M., Zhou, H., Tully, T. (https://doi.org/10.1016/0092-8674(95)90375-5>
61. 2008) Fragile X-related proteins regulate mammalian circadian behavioral rhythms. Am. J. Hum. Genet. 83, 43-52.
< , J., Fang, Z., Jud, C., Vansteensel, M. J., Kaasik, K., Lee, C. C., Albrecht, U., Tamanini, F., Meijer, J. H., Oostra, B. A., Nelson, D. L. (https://doi.org/10.1016/j.ajhg.2008.06.003>
62. 2013) Melatonin ameliorates cognitive impairment induced by sleep deprivation in rats: role of oxidative stress, BDNF and CaMKII. Behav. Brain Res. 256, 72-81.
< , L., Zhang, H.-Q., Lianga, X.-Y., Zhang, H.-F., Zhang, T., Liu, F.-E. (https://doi.org/10.1016/j.bbr.2013.07.051>
63. 2005) Deficits in trace fear memory and longterm potentiation in a mouse model for fragile X syndrome. J. Neurosci. 25, 7385-7392.
< , M.-G., Toyoda, H., Ko, S. W., Ding, H.-K., Wu, L.-J., Zhuo, M. (https://doi.org/10.1523/JNEUROSCI.1520-05.2005>