Folia Biologica
Journal of Cellular and Molecular Biology, Charles University 

Crossref logo

Fol. Biol. 2016, 62, 212-219

https://doi.org/10.14712/fb2016062050212

Age-Related (Aged vs. Adult) Comparison of the Effect of Two Mild Stressors on the Nerve Growth Factor (NGF) in the Rat Hypothalamic Supraoptic Nucleus (SON) – Immunohistochemical Study

Ewa Badowska-Szalewska, B. Ludkiewicz, R. Krawczyk, J. Moryś

Department of Anatomy and Neurobiology, Medical University of Gdańsk, Poland

Received October 2015
Accepted August 2016

References

1. Alleva, E., Petruzzi, S., Cirulli, F., Aloe, L. (1996) NGF regulatory role in stress and coping of rodents and humans. Pharmacol. Biochem. Behav. 54, 65-72. <https://doi.org/10.1016/0091-3057(95)02111-6>
2. Alleva, E., Santucci, D. (2001) Psychosocial vs. “physical” stress situations in rodents and humans: role of neurotrophins. Physiol. Behav. 73, 313-320. <https://doi.org/10.1016/S0031-9384(01)00498-X>
3. Aloe, L., Alleva, E., De Simone, R. (1990) Changes of NGF level in mouse hypothalamus following intermale aggressive behaviour: biological and immunohistochemical evidence. Behav. Brain Res. 39, 53-61. <https://doi.org/10.1016/0166-4328(90)90120-4>
4. Aloe, L., Alleva, E., Fiore, M. (2002) Stress and nerve growth factor: findings in animal models and humans. Pharmacol. Biochem. Behav. 73, 159-166. <https://doi.org/10.1016/S0091-3057(02)00757-8>
5. Armstrong, W. E. (1995) Morphological and electrophysiological classification of hypothalamic supraoptic neurons. Prog. Neurobiol. 47, 291-339. <https://doi.org/10.1016/0301-0082(95)80005-S>
6. Badowska-Szalewska, E., Klejbor, I., Ludkiewicz, B., Domaradzka- Pytel, B., Dziewiątkowski, J., Spodnik, J. H., Moryś, J. (2006) Immunoreactivity of c-Fos, NGF and its receptor TrkA in the periventricular zone of the rat hypothalamus after open field exposure. Pol. J. Vet. Sci. 9, 171-180.
7. Badowska-Szalewska, E., Krawczyk, R., Ludkiewicz, B., Moryś, J. (2015) The effect of mild stress stimulation on the nerve growth factor (NGF) and tyrosine kinase receptor A (TrkA) immunoreactivity in the paraventricular nucleus (PVN) of the hypothalamus and hippocampus in aged vs. adult rats. Neuroscience 290, 346-56. <https://doi.org/10.1016/j.neuroscience.2015.01.052>
8. Badowska-Szalewska, E., Ludkiewicz, B., Krawczyk, R., Moryś, J. (2016) The impact of two mild stressors on the nerve growth factor (NGF) immunoreactivity in the amygdala in aged rats compared to adult ones. Int. J. Dev. Neurosci. 49, 6-13. <https://doi.org/10.1016/j.ijdevneu.2015.12.005>
9. Bimonte-Nelson, H. A., Granholm, A. C., Nelson, M. E., Moore, A. B. (2008) Patterns of neurotrophin protein levels in male and female Fischer 344 rats from adulthood to senescence: how young is “young” and how old is “old”? Exp. Aging Res. 34, 13-26. <https://doi.org/10.1080/03610730701761908>
10. Bouwknecht, J. A., Spiga, F., Staub, D. R., Hale, M. W., Shekhar, A., Lowry, C. A. (2007) Differential effects of exposure to low-light or high-light open-field on anxiety-related behaviors: relationship to c-fos expression in serotonergic and non-serotonergic neurons in the dorsal raphe nucleus. Brain Res. Bull. 72, 32-43. <https://doi.org/10.1016/j.brainresbull.2006.12.009>
11. Cirulli, F., Alleva, E. (2009) The NGF saga: from animal models of psychosocial stress to stress-related psychopathology. Front. Neuroendocrinol. 30, 379-395. <https://doi.org/10.1016/j.yfrne.2009.05.002>
12. Conti, G., Gale, K., Kondratyev, A. (2009) Immunohistochemical evaluation of the protein expression of nerve growth factor and its TrkA receptor in rat limbic regions following electroshock seizures. Neurosci. Res. 65, 201-209. <https://doi.org/10.1016/j.neures.2009.07.001>
13. Cunningham, E. T. Jr., Sawchenko, P. E. (1991) Reflex control of magnocellular vasopressin and oxytocin secretion. Trends Neurosci. 14, 406-411. <https://doi.org/10.1016/0166-2236(91)90032-P>
14. Dal-Zotto, S., Martí, O., Armario, A. (2000) Influence of single or repeated experience of rats with forced swimming on behavioural and physiological responses to the stressor. Behav. Brain Res. 114, 175-181. <https://doi.org/10.1016/S0166-4328(00)00220-5>
15. Dubovicky, M., Jezova, D. (2004) Effect of chronic emotional stress on habituation processes in open field in adult rats. Ann. N. Y. Acad. Sci. 1018, 199-206. <https://doi.org/10.1196/annals.1296.023>
16. Engelmann, M., Ebner, K., Landgraf, R., Holsboer, F., Wotjak, C. T. (1999) Emotional stress triggers intrahypothalamic but not peripheral release of oxytocin in male rats. J. Neuroendocrinol. 11, 867-872. <https://doi.org/10.1046/j.1365-2826.1999.00403.x>
17. Engelmann, M., Ludwig, M. (2004) The activity of the hypothalamo- neurohypophysial system in response to acute stressor exposure: neuroendocrine and electrophysiological observations. Stress 7, 91-96. <https://doi.org/10.1080/10253890410001677240>
18. Hall, F. S., Huang, S., Fong, G. W., Sundstrom, J. M., Pert, A. (2000) Differential basis of strain and rearing effects on open-field behavior in Fawn Hooded and Wistar rats. Physiol. Behav. 71, 525-532. <https://doi.org/10.1016/S0031-9384(00)00372-3>
19. Hatton, G. I. (1997) Function-related plasticity in hypothalamus. Annu. Rev. Neurosci. 20, 375-397. <https://doi.org/10.1146/annurev.neuro.20.1.375>
20. Katoh-Semba, R., Semba, R., Takeuchi, I. K., Kato, K. (1998) Age-related changes in levels of brain-derived neurotrophic factor in selected brain regions of rats, normal mice and senescence-accelerated mice: a comparison to those of nerve growth factor and neurotrophin-3. Neurosci. Res. 31, 227-234. <https://doi.org/10.1016/S0168-0102(98)00040-6>
21. Kelly, A., Maguire, C., Lynch, M. A. (2000) Deficits in nerve growth factor release and tyrosine receptor kinase phosphorylation are associated with age-related impairment in long-term potentiation in the dentate gyrus. Neuroscience 95, 359-365. <https://doi.org/10.1016/S0306-4522(99)00460-1>
22. Kovács, K. J. (1998) c-Fos as a transcription factor: a stressful (re)view from a functional map. Neurochem. Int. 33, 287-397. <https://doi.org/10.1016/S0197-0186(98)00023-0>
23. Krause, E. G., de Kloet, A. D., Flak, J. N., Smeltzer, M. D., Solomon, M. B., Evanson, N. K., Woods, S. C., Sakai, R. R., Herman, J. P. (2011) Hydration state controls stress responsiveness and social behavior. J. Neurosci. 31, 5470-5476. <https://doi.org/10.1523/JNEUROSCI.6078-10.2011>
24. Landgraf, R., Neumann, I. D. (2004) Vasopressin and oxytocin release within the brain: a dynamic concept of multiple and variable modes of neuropeptide communication. Front. Neuroendocrinol. 25, 150-176. <https://doi.org/10.1016/j.yfrne.2004.05.001>
25. Lärkfors, L., Ebendal, T., Whittemore, S. R., Persson, H., Hoffer, B., Olson, L. (1987) Decreased level of nerve growth factor (NGF) and its messenger RNA in the aged rat brain. Brain Res. 427, 55-60.
26. Lee, T. H., Kato, H., Pan, L. H., Ryu, J. H., Kogure, K., Itoyama, Y. (1998) Localization of nerve growth factor, trkA and P75 immunoreactivity in the hippocampal formation and basal forebrain of adult rats. Neuroscience 83, 335-349. <https://doi.org/10.1016/S0306-4522(97)00346-1>
27. Lessmann, V., Gottmann, K., Malcangio, M. (2003) Neurotrophin secretion: current facts and future prospects. Prog. Neurobiol. 69, 341-374. <https://doi.org/10.1016/S0301-0082(03)00019-4>
28. Luo, X., Kiss, A., Makara, G., Lolait, S. J., Aguilera, G. (1994) Stress-specific regulation of corticotropin releasing hormone receptor expression in the paraventricular and supraoptic nuclei of the hypothalamus in the rat. J. Neuroendocrinol. 6, 689-696. <https://doi.org/10.1111/j.1365-2826.1994.tb00636.x>
29. Lupien, S. J. (2009) Brains under stress. Can. J. Psychiatry 54, 4-5. <https://doi.org/10.1177/070674370905400103>
30. Meyza, K. Z., Boguszewski, P. M., Nikolaev, E., Zagrodzka, J. (2007) The effect of age on the dynamics and the level of c-Fos activation in response to acute restraint in Lewis rats. Behav. Brain Res. 180, 183-189. <https://doi.org/10.1016/j.bbr.2007.03.007>
31. Miyata, S., Itoh, T., Matsushima, O., Nakashima, T., Kiyohara, T. (1994a) Not only osmotic stress but also repeated restraint stress causes structural plasticity in the supraoptic nucleus of the rat hypothalamus. Brain Res. Bull. 33, 669-675. <https://doi.org/10.1016/0361-9230(94)90231-3>
32. Miyata, S., Nakashima, T., Kiyohara, T. (1994b) Expression of c-fos immunoreactivity in the hypothalamic magnocellular neurons during chronic osmotic stimulations. Neurosci. Lett. 175, 63-66. <https://doi.org/10.1016/0304-3940(94)91078-2>
33. Niewiadomska, G., Baksalerska-Pazera, M., Lenarcik, I., Riedel, G. (2006) Compartmental protein expression of Tau, GSK-3β and TrkA in cholinergic neurons of aged rats. J. Neural Transm. 113, 1733-1746. <https://doi.org/10.1007/s00702-006-0488-4>
34. Pajović, S. B., Pejić, S., Stojiljković, V., Gavrilović, L., Dronjak, S., Kanazir, D. T. (2006) Alterations in hippocampal antioxidant enzyme activities and sympatho-adrenomedullary system of rats in response to different stress models. Physiol. Res. 55, 453-460. <https://doi.org/10.33549/physiolres.930807>
35. Pardon, M. (2007) Stress and ageing interactions: a paradox in the context of shared etiological and physiopathological processes. Brain Res. Rev. 54, 251-273. <https://doi.org/10.1016/j.brainresrev.2007.02.007>
36. Paxinos, G., Watson, C. (2006) The Rat Brain in Stereotaxic Coordinates. 6th ed. Academic Press Inc, New York.
37. Pedersen, W. A., Wan, R., Mattson, M. P. (2001) Impact of aging on stress-responsive neuroendocrine systems. Mech. Ageing Dev. 122, 963-983. <https://doi.org/10.1016/S0047-6374(01)00250-0>
38. Pereira, P. A., Cardoso, A., Paula-Barbosa, M. M. (2005) Nerve growth factor restores the expression of vasopressin and vasoactive intestinal polypeptide in the suprachiasmatic nucleus of aged rats. Brain Res. 1048, 123-130. <https://doi.org/10.1016/j.brainres.2005.04.066>
39. Perovic, M., Tesic, V., Mladenovic- Djordjevic, A., Smiljanic, K., Loncarevic-Vasiljkovic, N., Ruzdijic, S., Kanazir, S. (2013) BDNF transcripts, proBDNF and proNGF, in the cortex and hippocampus throughout the life span of the rat. Age (Dordr) 35, 2057-2070. <https://doi.org/10.1007/s11357-012-9495-6>
40. Plata-Salamán, C. R., Ilyin, S. E., Turrin, N. P., Gayle, D., Flynn, M. C., Bedard, T., Merali, Z., Anisman, H. (2000) Neither acute nor chronic exposure to a naturalistic (predator) stressor influences the interleukin-1β system, tumor necrosis factor-α, transforming growth factor-β1, and neuropeptide mRNAs in specific brain regions. Brain Res. Bull. 51, 187-193. <https://doi.org/10.1016/S0361-9230(99)00204-X>
41. Scaccianoce, S., Cigliana, G., Nicolai, R., Muscolo, L. A., Porcu, A., Navarra, D., Perez-Polo, J. R., Angelucci, L. (1993) Hypothalamic involvement in the activation of the pituitary-adrenocortical axis by nerve growth factor. Neuroendocrinology 58, 202-209. <https://doi.org/10.1159/000126534>
42. Scaccianoce, S., Lombardo, K., Angelucci, L. (2000) Nerve growth factor brain concentration and stress: changes depend on type of stressor and age. Int. J. Dev. Neurosci. 18, 469-479. <https://doi.org/10.1016/S0736-5748(00)00014-9>
43. Sofroniew, M. V., Howe, C. L., Mobley, W. C. (2001) Nerve growth factor signaling, neuroprotection, and neural repair. Annu. Rev. Neurosci. 24, 1217-1281. <https://doi.org/10.1146/annurev.neuro.24.1.1217>
44. Stern, J. E., Galarreta, M., Foehring, R. C., Hestrin, S., Armstrong, W. E. (1999) Differences in the properties of ionotropic glutamate synaptic currents in oxytocin and vasopressin neuroendocrine neurons. J. Neurosci. 19, 3367-3375. <https://doi.org/10.1523/JNEUROSCI.19-09-03367.1999>
45. Stone, E. A., Lehmann, M. L., Lin, Y., Quartermain, D. (2007) Reduced evoked fos expression in activity-related brain regions in animal models of behavioral depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 31, 1196-1207. <https://doi.org/10.1016/j.pnpbp.2007.04.010>
46. Swanson, L. W., Sawchenko, P. E. (1983) Hypothalamic integration: organization of the paraventricular and supraoptic nuclei. Annu. Rev. Neurosci. 6, 269-324. <https://doi.org/10.1146/annurev.ne.06.030183.001413>
47. Taglialatela, G., Angelucci, L., Scaccianoce, S., Foreman, P. J., Perez-Polo, J. R. (1991) Nerve growth factor modulates the activation of the hypothalamo-pituitary-adrenocortical axis during the stress response. Endocrinology 129, 2212-2218. <https://doi.org/10.1210/endo-129-4-2212>
48. Thrivikraman, K. V., Nemeroff, C. B., Plotsky, P. M. (2000) Sensitivity to glucocorticoid-mediated fast-feedback regulation of the hypothalamic-pituitary-adrenal axis is dependent upon stressor specific neurocircuitry. Brain Res. 870, 87-101. <https://doi.org/10.1016/S0006-8993(00)02405-7>
49. Von Richthofen, S., Lang, U. E., Hellweg, R. (2003) Effects of different kinds of acute stress on nerve growth factor content in rat brain. Brain Res. 987, 207-213. <https://doi.org/10.1016/S0006-8993(03)03338-9>
50. Watkins, A. D. (1995) Perceptions, emotions and immunity: an integrated homeostatic network. Q. J. Med. 88, 283-294.
51. Webster Marketon, J. I., Glaser, R. (2008) Stress hormones and immune function. Cell. Immunol. 252, 16-26. <https://doi.org/10.1016/j.cellimm.2007.09.006>
52. Wotjak, C. T., Ganster, J., Kohl, G., Holsboer, F., Landgraf, R., Engelmann, M. (1998) Dissociated central and peripheral release of vasopressin, but not oxytocin, in response to repeated swim stress: new insights into the secretory capacities of peptidergic neurons. Neuroscience 85, 1209-1022. <https://doi.org/10.1016/S0306-4522(97)00683-0>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Submissions

Archive