Fol. Biol. 2016, 62, 212-219
https://doi.org/10.14712/fb2016062050212
Age-Related (Aged vs. Adult) Comparison of the Effect of Two Mild Stressors on the Nerve Growth Factor (NGF) in the Rat Hypothalamic Supraoptic Nucleus (SON) – Immunohistochemical Study
References
1. 1996) NGF regulatory role in stress and coping of rodents and humans. Pharmacol. Biochem. Behav. 54, 65-72.
< , E., Petruzzi, S., Cirulli, F., Aloe, L. (https://doi.org/10.1016/0091-3057(95)02111-6>
2. 2001) Psychosocial vs. “physical” stress situations in rodents and humans: role of neurotrophins. Physiol. Behav. 73, 313-320.
< , E., Santucci, D. (https://doi.org/10.1016/S0031-9384(01)00498-X>
3. 1990) Changes of NGF level in mouse hypothalamus following intermale aggressive behaviour: biological and immunohistochemical evidence. Behav. Brain Res. 39, 53-61.
< , L., Alleva, E., De Simone, R. (https://doi.org/10.1016/0166-4328(90)90120-4>
4. 2002) Stress and nerve growth factor: findings in animal models and humans. Pharmacol. Biochem. Behav. 73, 159-166.
< , L., Alleva, E., Fiore, M. (https://doi.org/10.1016/S0091-3057(02)00757-8>
5. 1995) Morphological and electrophysiological classification of hypothalamic supraoptic neurons. Prog. Neurobiol. 47, 291-339.
< , W. E. (https://doi.org/10.1016/0301-0082(95)80005-S>
6. 2006) Immunoreactivity of c-Fos, NGF and its receptor TrkA in the periventricular zone of the rat hypothalamus after open field exposure. Pol. J. Vet. Sci. 9, 171-180.
, E., Klejbor, I., Ludkiewicz, B., Domaradzka- Pytel, B., Dziewiątkowski, J., Spodnik, J. H., Moryś, J. (
7. 2015) The effect of mild stress stimulation on the nerve growth factor (NGF) and tyrosine kinase receptor A (TrkA) immunoreactivity in the paraventricular nucleus (PVN) of the hypothalamus and hippocampus in aged vs. adult rats. Neuroscience 290, 346-56.
< , E., Krawczyk, R., Ludkiewicz, B., Moryś, J. (https://doi.org/10.1016/j.neuroscience.2015.01.052>
8. 2016) The impact of two mild stressors on the nerve growth factor (NGF) immunoreactivity in the amygdala in aged rats compared to adult ones. Int. J. Dev. Neurosci. 49, 6-13.
< , E., Ludkiewicz, B., Krawczyk, R., Moryś, J. (https://doi.org/10.1016/j.ijdevneu.2015.12.005>
9. 2008) Patterns of neurotrophin protein levels in male and female Fischer 344 rats from adulthood to senescence: how young is “young” and how old is “old”? Exp. Aging Res. 34, 13-26.
< , H. A., Granholm, A. C., Nelson, M. E., Moore, A. B. (https://doi.org/10.1080/03610730701761908>
10. 2007) Differential effects of exposure to low-light or high-light open-field on anxiety-related behaviors: relationship to c-fos expression in serotonergic and non-serotonergic neurons in the dorsal raphe nucleus. Brain Res. Bull. 72, 32-43.
< , J. A., Spiga, F., Staub, D. R., Hale, M. W., Shekhar, A., Lowry, C. A. (https://doi.org/10.1016/j.brainresbull.2006.12.009>
11. 2009) The NGF saga: from animal models of psychosocial stress to stress-related psychopathology. Front. Neuroendocrinol. 30, 379-395.
< , F., Alleva, E. (https://doi.org/10.1016/j.yfrne.2009.05.002>
12. 2009) Immunohistochemical evaluation of the protein expression of nerve growth factor and its TrkA receptor in rat limbic regions following electroshock seizures. Neurosci. Res. 65, 201-209.
< , G., Gale, K., Kondratyev, A. (https://doi.org/10.1016/j.neures.2009.07.001>
13. 1991) Reflex control of magnocellular vasopressin and oxytocin secretion. Trends Neurosci. 14, 406-411.
< , E. T. Jr., Sawchenko, P. E. (https://doi.org/10.1016/0166-2236(91)90032-P>
14. 2000) Influence of single or repeated experience of rats with forced swimming on behavioural and physiological responses to the stressor. Behav. Brain Res. 114, 175-181.
< , S., Martí, O., Armario, A. (https://doi.org/10.1016/S0166-4328(00)00220-5>
15. 2004) Effect of chronic emotional stress on habituation processes in open field in adult rats. Ann. N. Y. Acad. Sci. 1018, 199-206.
< , M., Jezova, D. (https://doi.org/10.1196/annals.1296.023>
16. 1999) Emotional stress triggers intrahypothalamic but not peripheral release of oxytocin in male rats. J. Neuroendocrinol. 11, 867-872.
< , M., Ebner, K., Landgraf, R., Holsboer, F., Wotjak, C. T. (https://doi.org/10.1046/j.1365-2826.1999.00403.x>
17. 2004) The activity of the hypothalamo- neurohypophysial system in response to acute stressor exposure: neuroendocrine and electrophysiological observations. Stress 7, 91-96.
< , M., Ludwig, M. (https://doi.org/10.1080/10253890410001677240>
18. 2000) Differential basis of strain and rearing effects on open-field behavior in Fawn Hooded and Wistar rats. Physiol. Behav. 71, 525-532.
< , F. S., Huang, S., Fong, G. W., Sundstrom, J. M., Pert, A. (https://doi.org/10.1016/S0031-9384(00)00372-3>
19. 1997) Function-related plasticity in hypothalamus. Annu. Rev. Neurosci. 20, 375-397.
< , G. I. (https://doi.org/10.1146/annurev.neuro.20.1.375>
20. 1998) Age-related changes in levels of brain-derived neurotrophic factor in selected brain regions of rats, normal mice and senescence-accelerated mice: a comparison to those of nerve growth factor and neurotrophin-3. Neurosci. Res. 31, 227-234.
< , R., Semba, R., Takeuchi, I. K., Kato, K. (https://doi.org/10.1016/S0168-0102(98)00040-6>
21. 2000) Deficits in nerve growth factor release and tyrosine receptor kinase phosphorylation are associated with age-related impairment in long-term potentiation in the dentate gyrus. Neuroscience 95, 359-365.
< , A., Maguire, C., Lynch, M. A. (https://doi.org/10.1016/S0306-4522(99)00460-1>
22. 1998) c-Fos as a transcription factor: a stressful (re)view from a functional map. Neurochem. Int. 33, 287-397.
< , K. J. (https://doi.org/10.1016/S0197-0186(98)00023-0>
23. 2011) Hydration state controls stress responsiveness and social behavior. J. Neurosci. 31, 5470-5476.
< , E. G., de Kloet, A. D., Flak, J. N., Smeltzer, M. D., Solomon, M. B., Evanson, N. K., Woods, S. C., Sakai, R. R., Herman, J. P. (https://doi.org/10.1523/JNEUROSCI.6078-10.2011>
24. 2004) Vasopressin and oxytocin release within the brain: a dynamic concept of multiple and variable modes of neuropeptide communication. Front. Neuroendocrinol. 25, 150-176.
< , R., Neumann, I. D. (https://doi.org/10.1016/j.yfrne.2004.05.001>
25. 1987) Decreased level of nerve growth factor (NGF) and its messenger RNA in the aged rat brain. Brain Res. 427, 55-60.
, L., Ebendal, T., Whittemore, S. R., Persson, H., Hoffer, B., Olson, L. (
26. 1998) Localization of nerve growth factor, trkA and P75 immunoreactivity in the hippocampal formation and basal forebrain of adult rats. Neuroscience 83, 335-349.
< , T. H., Kato, H., Pan, L. H., Ryu, J. H., Kogure, K., Itoyama, Y. (https://doi.org/10.1016/S0306-4522(97)00346-1>
27. 2003) Neurotrophin secretion: current facts and future prospects. Prog. Neurobiol. 69, 341-374.
< , V., Gottmann, K., Malcangio, M. (https://doi.org/10.1016/S0301-0082(03)00019-4>
28. 1994) Stress-specific regulation of corticotropin releasing hormone receptor expression in the paraventricular and supraoptic nuclei of the hypothalamus in the rat. J. Neuroendocrinol. 6, 689-696.
< , X., Kiss, A., Makara, G., Lolait, S. J., Aguilera, G. (https://doi.org/10.1111/j.1365-2826.1994.tb00636.x>
29. 2009) Brains under stress. Can. J. Psychiatry 54, 4-5.
< , S. J. (https://doi.org/10.1177/070674370905400103>
30. 2007) The effect of age on the dynamics and the level of c-Fos activation in response to acute restraint in Lewis rats. Behav. Brain Res. 180, 183-189.
< , K. Z., Boguszewski, P. M., Nikolaev, E., Zagrodzka, J. (https://doi.org/10.1016/j.bbr.2007.03.007>
31. 1994a) Not only osmotic stress but also repeated restraint stress causes structural plasticity in the supraoptic nucleus of the rat hypothalamus. Brain Res. Bull. 33, 669-675.
< , S., Itoh, T., Matsushima, O., Nakashima, T., Kiyohara, T. (https://doi.org/10.1016/0361-9230(94)90231-3>
32. 1994b) Expression of c-fos immunoreactivity in the hypothalamic magnocellular neurons during chronic osmotic stimulations. Neurosci. Lett. 175, 63-66.
< , S., Nakashima, T., Kiyohara, T. (https://doi.org/10.1016/0304-3940(94)91078-2>
33. 2006) Compartmental protein expression of Tau, GSK-3β and TrkA in cholinergic neurons of aged rats. J. Neural Transm. 113, 1733-1746.
< , G., Baksalerska-Pazera, M., Lenarcik, I., Riedel, G. (https://doi.org/10.1007/s00702-006-0488-4>
34. 2006) Alterations in hippocampal antioxidant enzyme activities and sympatho-adrenomedullary system of rats in response to different stress models. Physiol. Res. 55, 453-460.
< , S. B., Pejić, S., Stojiljković, V., Gavrilović, L., Dronjak, S., Kanazir, D. T. (https://doi.org/10.33549/physiolres.930807>
35. 2007) Stress and ageing interactions: a paradox in the context of shared etiological and physiopathological processes. Brain Res. Rev. 54, 251-273.
< , M. (https://doi.org/10.1016/j.brainresrev.2007.02.007>
36. Paxinos, G., Watson, C. (2006) The Rat Brain in Stereotaxic Coordinates. 6th ed. Academic Press Inc, New York.
37. 2001) Impact of aging on stress-responsive neuroendocrine systems. Mech. Ageing Dev. 122, 963-983.
< , W. A., Wan, R., Mattson, M. P. (https://doi.org/10.1016/S0047-6374(01)00250-0>
38. 2005) Nerve growth factor restores the expression of vasopressin and vasoactive intestinal polypeptide in the suprachiasmatic nucleus of aged rats. Brain Res. 1048, 123-130.
< , P. A., Cardoso, A., Paula-Barbosa, M. M. (https://doi.org/10.1016/j.brainres.2005.04.066>
39. 2013) BDNF transcripts, proBDNF and proNGF, in the cortex and hippocampus throughout the life span of the rat. Age (Dordr) 35, 2057-2070.
< , M., Tesic, V., Mladenovic- Djordjevic, A., Smiljanic, K., Loncarevic-Vasiljkovic, N., Ruzdijic, S., Kanazir, S. (https://doi.org/10.1007/s11357-012-9495-6>
40. 2000) Neither acute nor chronic exposure to a naturalistic (predator) stressor influences the interleukin-1β system, tumor necrosis factor-α, transforming growth factor-β1, and neuropeptide mRNAs in specific brain regions. Brain Res. Bull. 51, 187-193.
< , C. R., Ilyin, S. E., Turrin, N. P., Gayle, D., Flynn, M. C., Bedard, T., Merali, Z., Anisman, H. (https://doi.org/10.1016/S0361-9230(99)00204-X>
41. 1993) Hypothalamic involvement in the activation of the pituitary-adrenocortical axis by nerve growth factor. Neuroendocrinology 58, 202-209.
< , S., Cigliana, G., Nicolai, R., Muscolo, L. A., Porcu, A., Navarra, D., Perez-Polo, J. R., Angelucci, L. (https://doi.org/10.1159/000126534>
42. 2000) Nerve growth factor brain concentration and stress: changes depend on type of stressor and age. Int. J. Dev. Neurosci. 18, 469-479.
< , S., Lombardo, K., Angelucci, L. (https://doi.org/10.1016/S0736-5748(00)00014-9>
43. 2001) Nerve growth factor signaling, neuroprotection, and neural repair. Annu. Rev. Neurosci. 24, 1217-1281.
< , M. V., Howe, C. L., Mobley, W. C. (https://doi.org/10.1146/annurev.neuro.24.1.1217>
44. 1999) Differences in the properties of ionotropic glutamate synaptic currents in oxytocin and vasopressin neuroendocrine neurons. J. Neurosci. 19, 3367-3375.
< , J. E., Galarreta, M., Foehring, R. C., Hestrin, S., Armstrong, W. E. (https://doi.org/10.1523/JNEUROSCI.19-09-03367.1999>
45. 2007) Reduced evoked fos expression in activity-related brain regions in animal models of behavioral depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 31, 1196-1207.
< , E. A., Lehmann, M. L., Lin, Y., Quartermain, D. (https://doi.org/10.1016/j.pnpbp.2007.04.010>
46. 1983) Hypothalamic integration: organization of the paraventricular and supraoptic nuclei. Annu. Rev. Neurosci. 6, 269-324.
< , L. W., Sawchenko, P. E. (https://doi.org/10.1146/annurev.ne.06.030183.001413>
47. 1991) Nerve growth factor modulates the activation of the hypothalamo-pituitary-adrenocortical axis during the stress response. Endocrinology 129, 2212-2218.
< , G., Angelucci, L., Scaccianoce, S., Foreman, P. J., Perez-Polo, J. R. (https://doi.org/10.1210/endo-129-4-2212>
48. 2000) Sensitivity to glucocorticoid-mediated fast-feedback regulation of the hypothalamic-pituitary-adrenal axis is dependent upon stressor specific neurocircuitry. Brain Res. 870, 87-101.
< , K. V., Nemeroff, C. B., Plotsky, P. M. (https://doi.org/10.1016/S0006-8993(00)02405-7>
49. 2003) Effects of different kinds of acute stress on nerve growth factor content in rat brain. Brain Res. 987, 207-213.
< , S., Lang, U. E., Hellweg, R. (https://doi.org/10.1016/S0006-8993(03)03338-9>
50. 1995) Perceptions, emotions and immunity: an integrated homeostatic network. Q. J. Med. 88, 283-294.
, A. D. (
51. 2008) Stress hormones and immune function. Cell. Immunol. 252, 16-26.
< Marketon, J. I., Glaser, R. (https://doi.org/10.1016/j.cellimm.2007.09.006>
52. 1998) Dissociated central and peripheral release of vasopressin, but not oxytocin, in response to repeated swim stress: new insights into the secretory capacities of peptidergic neurons. Neuroscience 85, 1209-1022.
< , C. T., Ganster, J., Kohl, G., Holsboer, F., Landgraf, R., Engelmann, M. (https://doi.org/10.1016/S0306-4522(97)00683-0>