Fol. Biol. 2016, 62, 225-234
https://doi.org/10.14712/fb2016062060225
Cystatin C Is Associated with the Extent and Characteristics of Coronary Atherosclerosis in Patients with Preserved Renal Function
References
1. 2005). Lack of the cysteine protease inhibitor cystatin C promotes atherosclerosis in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 25, 2151-2156.
< , E., To, F., Håkansson, K., Grubb, A., Brånén, L., Nilsson, J., Jovinge, S. (https://doi.org/10.1161/01.ATV.0000179600.34086.7d>
2. 2001) Circulating cell adhesion molecules and death in patients with coronary artery disease. Circulation 104, 1336-1342.
< , S., Rupprecht, H. J., Bickel, C., Peetz, D., Hafner, G., Tiret, L., Meyer, J. (https://doi.org/10.1161/hc3701.095949>
3. 2008) Lipoprotein abnormalities associated with mild impairment of kidney function in the multi-ethnic study of atherosclerosis. Clin. J. Am. Soc. Nephrol. 3, 125-132.
< , I. H., Astor, B. C., Kramer, H., Palmas, W., Seliger, S. L., Shlipak, M. G., Siscovick, D. S., Tsai, M. Y., Kestenbaum, B. (https://doi.org/10.2215/CJN.03390807>
4. 2011) Association between IVUS findings and adverse outcomes in patients with coronary artery disease: the VIVA (VH-IVUS in Vulnerable Atherosclerosis) Study. JACC Cardiovasc. Imaging 4, 894-901.
< , P. A., Obaid, D. R., O’Sullivan, M., Shapiro, L. M., McNab, D., Densem, C. G., Schofield, P. M., Braganza, D., Clarke, S. C., Ray, K. K., West, N. E., Bennett, M. R. (https://doi.org/10.1016/j.jcmg.2011.05.005>
5. 2014) In vivo detection of high-risk coronary plaques by radiofrequency intravascular ultrasound and cardiovascular outcome: results of the ATHEROREMO-IVUS study. Eur. Heart J. 35, 639-647.
< , J. M., Garcia-Garcia, H. M., de Boer, S. P., Kardys, I., Heo, J. H., Akkerhuis, K. M., Oemrawsingh, R. M., van Domburg, R. T., Ligthart, J., Witberg, K. T., Regar, E., Serruys P. W., van Geuns, R. J., Boersma, E. (https://doi.org/10.1093/eurheartj/eht484>
6. 2011) Cysteine protease cathepsins in atherosclerosis- based vascular disease and its complications. Hypertension 58, 978-986.
< , X. W., Huang, Z., Kuzuya, M., Okumura, K., Murohara, T. (https://doi.org/10.1161/HYPERTENSIONAHA.111.180935>
7. 2004) Human evidence that the cystatin C gene is implicated in focal progression of coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 24, 551-557.
< , P., Deguchi, H., Samnegård, A., Lundman, P., Boquist, S., Tornvall, P., Ericsson, C. G., Bergstrand, L., Hansson, L. O., Ye, S., Hamsten, A. (https://doi.org/10.1161/01.ATV.0000117180.57731.36>
8. 2009) Macrophage responses to interferon-γ are dependent on cystatin C levels. Int. J. Biochem. Cell Biol. 41, 2262-2269.
< , K. H., Wallin, H., Janciauskiene, S., Abrahamson M. (https://doi.org/10.1016/j.biocel.2009.05.005>
9. 2009) Tissue characterisation using intravascular radiofrequency data analysis: recommendations for acquisition, analysis, interpretation and reporting. EuroIntervention 5, 177-189.
< , H. M., Mintz, G. S., Lerman, A., Vince, D. G., Margolis, M. P., van Es, G. A., Morel, M. A., Nair, A., Virmani, R., Burke, A. P., Stone, G. W., Serruys, P. W. (https://doi.org/10.4244/EIJV5I2A29>
10. 2004) Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N. Engl. J. Med. 351, 1296-1305.
< , A. S., Chertow, G. M., Fan, D., McCulloch, C. E., Hsu, C. Y. (https://doi.org/10.1056/NEJMoa041031>
11. 2009) Relationship between plasma cathepsin S and cystatin C levels and coronary plaque morphology of mild to moderate lesions: an in vivo study using intravascular ultrasound. Chin. Med. J. 122, 2820-2826.
, F. F., Lü, S. Z., Chen, Y. D., Zhou, Y. J., Song, X. T., Jin, Z. N., Liu, H. (
12. 2007) Comparison of virtual histology to intravascular ultrasound of culprit coronary lesions in acute coronary syndrome and target coronary lesions in stable angina pectoris. Am. J. Cardiol. 100, 953-959.
< , M. K., Mintz, G. S., Lee, C. W., Suh, J., Kim, J. H., Park, D. W., Lee S. W., Kim, Y. H., Cheong, S. S., Kim, J. J., Park, S. W., Park, S. J. (https://doi.org/10.1016/j.amjcard.2007.04.034>
13. 2013) Comparison of coronary plaque components between non-culprit lesions in patients with acute coronary syndrome and target lesions in patients with stable angina: virtual histology-intravascular ultrasound analysis. Korean Circ. J. 43, 607-614.
< , Y. J., Jeong, M. H., Choi, Y. H., Park, S. Y., Rhew, S. H., Jeong, H. C., Cho, J. Y., Jang, S. Y., Lee, K. H., Park, K. H., Sim, D. S., Yoon, N. S., Yoon, H. J., Kim, K. H., Park, H. W., Kim, J. H., Ahn, Y., Cho, J. G., Park, J. C., Kang, J. C. (https://doi.org/10.4070/kcj.2013.43.9.607>
14. 2007) Association of cystatin C with mortality, cardiovascular events, and incident heart failure among persons with coronary heart disease: data from the Heart and Soul Study. Circulation 115, 173-179.
< , J. H., Shlipak, M. G., Chertow, G. M., Whooley, M. A. (https://doi.org/10.1161/CIRCULATIONAHA.106.644286>
15. 2010) Plasma cystatin C concentration reflects the severity of coronary artery disease in patients without chronic kidney disease. Circ. J. 74, 2441-2447.
< , A., Hirata, Y., Ando, J., Fujita, H., Morita, T., Takahashi, M., Nagata, D., Kohro, T., Imai, Y., Nagai, R. (https://doi.org/10.1253/circj.CJ-10-0158>
16. 2010) TNF-α in atherosclerosis, myocardial ischemia/reperfusion and heart failure. Pharmacol. Ther. 127, 295-314.
< , P., Heusch, G., Schulz, R. (https://doi.org/10.1016/j.pharmthera.2010.05.002>
17. 2010) Clinical utility of serum cystatin C in predicting coronary artery disease. Cardiol. J. 17, 374-380.
, M., Batur, M. K., Karaarslan, O., Abali, G. (
18. 2013) The prediction of coronary artery disease based on non-invasive examinations and heme oxygenase 1 polymorphism versus virtual histology. J. Invasive Cardiol. 25, 32-37.
, T., Kral, A., Skalicka, H., Mintz, G. S., Kralik, L., Chval, M., Horak, J., Skalicka, L., Sonka, M., Wahle, A., Downe, R. W., Uhrova, J., Benakova, H., Cernohousova, L., Martasek, P., Belohlavek, J., Aschermann, M., Linhart, A. (
19. 2010) Impact of elevated cystatin C level on cardiovascular disease risk in predominantly high cardiovascular risk populations: a meta-analysis. Circ. Cardiovasc. Qual. Outcomes 3, 675-683.
< , M., Saver, J. L., Huang, W. H., Chow, J., Chang, K. H., Ovbiagele, B. (https://doi.org/10.1161/CIRCOUTCOMES.110.957696>
20. 1999) A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann. Intern. Med. 130, 461-470.
< , A. S., Bosch, J. P., Lewis, J. B., Greene, T., Rogers, N., Roth, D. (https://doi.org/10.7326/0003-4819-130-6-199903160-00002>
21. 2006) Optimal surface segmentation in volumetric images – a graph-theoretic approach. IEEE Trans. Pattern Anal. Mach. Intell. 28, 119-134.
, K., Wu, X., Chen, D. Z., Sonka, M. (
22. 2005) Genotype and plasma concentration of cystatin C in patients with coronary heart disease and risk for secondary cardiovascular events. Arterioscler. Thromb. Vasc. Biol. 25, 1470-1474.
< , M., Hoffmann, M. M., Koenig, W., Brenner, H., Rothenbacher, D. (https://doi.org/10.1161/01.ATV.0000168416.74206.62>
23. 2001) American College of Cardiology clinical expert consensus document on standards for acquisition, measurement and reporting of intravascular ultrasound studies (IVUS). A report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents. J. Am. Coll. Cardiol. 37, 1478-1492.
< , G. S., Nissen, S. E., Anderson, W. D., Bailey, S. R., Erbel, R., Fitzgerald, P. J., Pinto, F. J., Rosenfield, K., Siegel, R. J., Tuzcu, E. M., Yock, P. G. (https://doi.org/10.1016/S0735-1097(01)01175-5>
24. 2011) Clinical expert consensus document on standards for acquisition, measurement and reporting of intravascular ultrasound regression/progression studies. EuroIntervention 6, 1123-1130.
< , G. S., Garcia-Garcia, H. M., Nicholls, S. J., Weissman, N. J., Bruining, N., Crowe, T., Tardif, J. C., Serruys, P. W. (https://doi.org/10.4244/EIJV6I9A195>
25. 2001) Risk stratification in unstable angina and non-Q wave myocardial infarction using soluble cell adhesion molecules. Heart 85, 623-627.
< , N. T., Foley, J. B., Murphy, R. T., Curtin, R., Crean, P. A., Walsh, M. (https://doi.org/10.1136/heart.85.6.623>
26. 2014) Construction and validation of a plaque discrimination score from the anatomical and histological differences in coronary atherosclerosis: the Liverpool IVUS-VHEART (Intra Vascular UltraSound-Virtual-Histology Evaluation of Atherosclerosis Requiring Treatment) study. EuroIntervention 10, 815-823.
< , S. W., Stables, R. H., Garcia-Garcia, H. M., Grayson, A. D., Shaw, M. A., Perry, R. A., Serruys, P. W., Palmer, N. D. (https://doi.org/10.4244/EIJV10I7A141>
27. 2002) Coronary plaque classification with intravascular ultrasound radiofrequency data analysis. Circulation 106, 2200-2206.
< , A., Kuban, B. D., Tuzcu, M., Schoenhagen, P., Nissen, S. E., Vince, D. G. (https://doi.org/10.1161/01.CIR.0000035654.18341.5E>
28. 1998) Upregulation of VCAM-1 and ICAM-1 at atherosclerosis- prone sites on the endothelium in the ApoE-deficient mouse. Arterioscler. Thromb. Vasc. Biol. 18, 842-851.
< , Y., Raines, E., Plump, A., Breslow, J. L., Ross, R. (https://doi.org/10.1161/01.ATV.18.5.842>
29. 2012) Inflammation, oxidative stress, glomerular filtration rate, and albuminuria in elderly men: a cross-sectional study. BMC Res. Notes 5, 537.
< , E., Helmersson-Karlqvist, J., Risérus, U., Sundström, J., Larsson, A., Jobs, E., Basu, S., Ingelsson, E., Arnlöv, J. (https://doi.org/10.1186/1756-0500-5-537>
30. 2008) Cystatin C is associated with an increased coronary atherosclerotic burden and a stable plaque phenotype in patients with ischemic heart disease and normal glomerular filtration rate. Atherosclerosis 198, 373-380.
< , G., Conte, M., Della Bona, R., Altamura, L., Siviglia, M., Dato, I., Ferrante, G., Leone, A. M., Porto, I., Burzotta, F., Brugaletta, S., Biasucci, L. M., Crea, F. (https://doi.org/10.1016/j.atherosclerosis.2007.09.022>
31. 2013) Effect of cystatin C levels on angiographic atherosclerosis progression and events among postmenopausal women with angiographically decompensated coronary artery disease (from the Women’s Angiographic Vitamin and Estrogen [WAVE] study). Am. J. Cardiol. 111, 1681-1687.
< , D., Ahmad, S., Silverman, A., Lindsay, J. (https://doi.org/10.1016/j.amjcard.2013.02.019>
32. 2000) Elevation of tumor necrosis factor-α and increased risk of coronary events after myocardial infarction. Circulation 101, 2149-2153.
< , P., Rifai, N., Pfeffer, M., Sacks, F., Lepage, S., Braunwald, E. (https://doi.org/10.1161/01.CIR.101.18.2149>
33. 2016) Increased cystatin C levels as a risk factor of cardiovascular events in patients with preserved estimated glomerular filtration rate after elective percutaneous coronary intervention with drug-eluting stents. Heart Vessels 31, 694-701.
< , E., Shimada, K., Miyauchi, K., Masaki,Y., Kojima, T., Miyazaki, T., Kurata, T., Ogita, M., Tsuboi, S., Yoshihara, T., Miyazaki, T., Ohsaka, A., Daida, H. (https://doi.org/10.1007/s00380-015-0674-0>
34. 2013) How to understand the association between cystatin C levels and cardiovascular disease: imbalance, counterbalance, or consequence? J. Cardiol. 62, 331-335.
< , J. V., Souza, F. L., Salgado, B. J. (https://doi.org/10.1016/j.jjcc.2013.05.015>
35. 1999) Cystatin C deficiency in human atherosclerosis and aortic aneurysm. J. Clin. Invest. 104, 1191-1197.
< , G. P., Sukhova, G. K., Grubb, A., Ducharme, A., Rhode, L. H., Lee, R. T., Ridker, P. M., Libby, P., Chapman, H. (https://doi.org/10.1172/JCI7709>
36. 2005) Cystatin C and the risk of death and cardiovascular events among elderly persons. N. Engl. J. Med. 352, 2049-2060.
< , M. G., Sarnak, M. J., Katz, R., Fried, L. F., Seliger, S. L., Newman, A. B., Siscovick, D. S., Stehman-Breen, C. (https://doi.org/10.1056/NEJMoa043161>
37. 2012) Cystatin C as prognostic biomarker in ST-segment elevation acute myocardial infarction. Am. J. Cardiol. 109, 1431-1438.
< , D., Cortez-Dias, N., Jorge, C., Marques, J. S., Carrilho- Ferreira, P., Magalhães, A., Martins, S. R., Gonçalves, S., da Silva, P. C., Fiúza, M., Diogo, A. N., Pinto, F. J. (https://doi.org/10.1016/j.amjcard.2012.01.356>
38. 2006) Assessing kidney function-measured and estimated glomerular filtration rate. N. Engl. J. Med. 354, 2473-83.
< , L.A., Coresh, J., Greene, T., Levey, A. S. (https://doi.org/10.1056/NEJMra054415>
39. 2011) A prospective natural-history study of coronary atherosclerosis. N. Engl. J. Med. 364, 226-235.
< , G. W., Maehara, A., Lansky, A., de Bruyne, B., Cristea, E., Mintz, G. S., Mehran, R., McPherson, J., Farhat, N., Marso, S. P., Parise, H., Templin, B., White, R., Zhang, Z., Serruys, P. W. (https://doi.org/10.1056/NEJMoa1002358>
40. 2013) Graph-based IVUS segmentation with efficient computer-aided refinement. IEEE Trans. Med. Imaging 32, 1536-1549.
, S., Sonka, M., Beichel, R. R. (
41. 1998) Expression of the elastolytic cathepsins S and K in human atheroma and regulation of their production in smooth muscle cells. J. Clin. Invest. 102, 576-583.
< , G. K., Shi, G. P., Simon, D. I., Chapman, H. A., Libby, P. (https://doi.org/10.1172/JCI181>
42. 2005) Cystatin C deficiency increases elastic lamina degradation and aortic dilatation in apolipoprotein E-null mice. Circ. Res. 96, 368-375.
< , G. K., Wang, B., Libby, P., Pan, J. H., Zhang, Y., Grubb, A., Fang, K., Chapman, H. A., Shi, G. P. (https://doi.org/10.1161/01.RES.0000155964.34150.F7>
43. 2015) Cystatin C is not causally related to coronary artery disease. PLoS One 10, e0129269.
< , P., Almgren, P., Hedblad, B., Engström, G., Persson, M., Christensson, A., Melander, O. (https://doi.org/10.1371/journal.pone.0129269>
44. 2009) Cystatin C and cardiovascular risk. Clin. Chem. 55, 1932-1943.
< , N., Koenig, W., Kaski, J. C. (https://doi.org/10.1373/clinchem.2009.128397>
45. 2011) Higher cystatin C level predicts long-term mortality in patients with peripheral arterial disease. Atherosclerosis 216, 440-445.
< , G., Shi, G. P., Urbonavicius, S., Henneberg, E. W., Lindholt, J. S. (https://doi.org/10.1016/j.atherosclerosis.2011.02.016>
46. 1999) Chicken cystatin stimulates nitric oxide release from interferon-γ activated mouse peritoneal macrophages via cytokine synthesis. Eur. J. Biochem. 266, 1111-1117.
< , L., Lalmanach, G., Vercruysse, V., Hoebeke J., Gauthier, F., Vray, B. (https://doi.org/10.1046/j.1432-1327.1999.00964.x>
47. 2006) Pathology of the vulnerable plaque. J. Am. Coll. Cardiol. 47, C13-18.
< , R., Burke, A. P., Farb, A., Kolodgie, F. D. (https://doi.org/10.1016/j.jacc.2005.10.065>
48. 1999) Geometrically correct 3D reconstruction of intravascular ultrasound images by fusion with biplane angiography – methods and validation. IEEE Trans. Med. Imaging 18, 686-699.
< , A., Prause, P. M., DeJong, S. C., Sonka, M. (https://doi.org/10.1109/42.796282>
49. 2006) Plaque development, vessel curvature, and wall shear stress in coronary arteries assessed by X-ray angiography and intravascular ultrasound. Med. Image Anal. 10, 615-631.
< , A., Lopez, J. J., Olszewski, M. E., Vigmostad, S. C., Chandran, K. B., Rossen, J. D., Sonka, M. (https://doi.org/10.1016/j.media.2006.03.002>
50. 2008) Relations between markers of renal function, coronary risk factors and the occurrence and severity of coronary artery disease. Atherosclerosis 197, 853-859.
< , J., Sim, A. S., Wang, X. L., Salonikas, C., Moriatis, M., Naidoo, D., Wilcken, D. E. (https://doi.org/10.1016/j.atherosclerosis.2007.07.034>
51. 2014) Serum cystatin C levels are associated with coronary artery disease and its severity. Clin. Biochem. 47, 176-181.
< , G. N., Sun, K., Hu, D. L., Wu, H. H., Wang, X. Z., Zhang, J. S. (https://doi.org/10.1016/j.clinbiochem.2014.07.013>
52. 2015) Cystatin C is a disease associated protein subject to multiple regulation. Immunol. Cell. Biol. 93, 442-451.
< , Y., Ding, Y., Li, X., Wu, X. (https://doi.org/10.1038/icb.2014.121>
53. 2010) LOGISMOS – layered optimal graph image segmentation of multiple objects and surfaces: cartilage segmentation in the knee joint. IEEE Trans. Med. Imaging 29, 2023-2037.
< , Y., Zhang, X., Williams, R., Wu, X., Anderson, D. D., Sonka, M. (https://doi.org/10.1109/TMI.2010.2058861>
54. 2009) Inflammatory biomarkers in coronary artery disease. J. Cardiol. 53, 317-333.
< , E., Pappa, N. (https://doi.org/10.1016/j.jjcc.2008.12.007>
55. 2013) The CD40/CD40L system: a new therapeutic target for disease. Immunol. Lett. 153, 58-61.
< , B., Wu, T., Chen, M., Zhou, Y., Yi, D., Guo, R. (https://doi.org/10.1016/j.imlet.2013.07.005>
56. 2009) Renal dysfunction potentiates foam cell formation by repressing ABCA1. Arterioscler. Thromb. Vasc. Biol. 29, 1277-1282.
< , Y., Yancey, P., Castro, I. Khan, W. N., Motojima, M., Ichikawa, I., Fogo, A. B., Linton, M. F., Fazio, S., Kon, V. (https://doi.org/10.1161/ATVBAHA.109.188995>