Folia Biologica
Journal of Cellular and Molecular Biology, Charles University 

Crossref logo

Fol. Biol. 2016, 62, 225-234

https://doi.org/10.14712/fb2016062060225

Cystatin C Is Associated with the Extent and Characteristics of Coronary Atherosclerosis in Patients with Preserved Renal Function

Aleš Král1, T. Kovárník1, Z. Vaníčková2, H. Skalická1, J. Horák1, K. Bayerová1, Z. Chen3, A. Wahle3, L. Zhang3, K. Kopřiva4, H. Benáková1, M. Sonka3, A. Linhart1

12nd Department of Medicine – Department of Cardiovascular Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
2Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
3Iowa Institute for Biomedical Imaging, Department of Electrical & Computer Engineering, The University of Iowa, Iowa City, IA, USA
4Cardiology Department of Homolka Hospital, Prague, Czech Republic

Received January 2016
Accepted June 2016

References

1. Bengtsson, E., To, F., Håkansson, K., Grubb, A., Brånén, L., Nilsson, J., Jovinge, S. (2005). Lack of the cysteine protease inhibitor cystatin C promotes atherosclerosis in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 25, 2151-2156. <https://doi.org/10.1161/01.ATV.0000179600.34086.7d>
2. Blankenberg, S., Rupprecht, H. J., Bickel, C., Peetz, D., Hafner, G., Tiret, L., Meyer, J. (2001) Circulating cell adhesion molecules and death in patients with coronary artery disease. Circulation 104, 1336-1342. <https://doi.org/10.1161/hc3701.095949>
3. de Boer, I. H., Astor, B. C., Kramer, H., Palmas, W., Seliger, S. L., Shlipak, M. G., Siscovick, D. S., Tsai, M. Y., Kestenbaum, B. (2008) Lipoprotein abnormalities associated with mild impairment of kidney function in the multi-ethnic study of atherosclerosis. Clin. J. Am. Soc. Nephrol. 3, 125-132. <https://doi.org/10.2215/CJN.03390807>
4. Calvert, P. A., Obaid, D. R., O’Sullivan, M., Shapiro, L. M., McNab, D., Densem, C. G., Schofield, P. M., Braganza, D., Clarke, S. C., Ray, K. K., West, N. E., Bennett, M. R. (2011) Association between IVUS findings and adverse outcomes in patients with coronary artery disease: the VIVA (VH-IVUS in Vulnerable Atherosclerosis) Study. JACC Cardiovasc. Imaging 4, 894-901. <https://doi.org/10.1016/j.jcmg.2011.05.005>
5. Cheng, J. M., Garcia-Garcia, H. M., de Boer, S. P., Kardys, I., Heo, J. H., Akkerhuis, K. M., Oemrawsingh, R. M., van Domburg, R. T., Ligthart, J., Witberg, K. T., Regar, E., Serruys P. W., van Geuns, R. J., Boersma, E. (2014) In vivo detection of high-risk coronary plaques by radiofrequency intravascular ultrasound and cardiovascular outcome: results of the ATHEROREMO-IVUS study. Eur. Heart J. 35, 639-647. <https://doi.org/10.1093/eurheartj/eht484>
6. Cheng, X. W., Huang, Z., Kuzuya, M., Okumura, K., Murohara, T. (2011) Cysteine protease cathepsins in atherosclerosis- based vascular disease and its complications. Hypertension 58, 978-986. <https://doi.org/10.1161/HYPERTENSIONAHA.111.180935>
7. Eriksson, P., Deguchi, H., Samnegård, A., Lundman, P., Boquist, S., Tornvall, P., Ericsson, C. G., Bergstrand, L., Hansson, L. O., Ye, S., Hamsten, A. (2004) Human evidence that the cystatin C gene is implicated in focal progression of coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 24, 551-557. <https://doi.org/10.1161/01.ATV.0000117180.57731.36>
8. Frendéus, K. H., Wallin, H., Janciauskiene, S., Abrahamson M. (2009) Macrophage responses to interferon-γ are dependent on cystatin C levels. Int. J. Biochem. Cell Biol. 41, 2262-2269. <https://doi.org/10.1016/j.biocel.2009.05.005>
9. Garcia-Garcia, H. M., Mintz, G. S., Lerman, A., Vince, D. G., Margolis, M. P., van Es, G. A., Morel, M. A., Nair, A., Virmani, R., Burke, A. P., Stone, G. W., Serruys, P. W. (2009) Tissue characterisation using intravascular radiofrequency data analysis: recommendations for acquisition, analysis, interpretation and reporting. EuroIntervention 5, 177-189. <https://doi.org/10.4244/EIJV5I2A29>
10. Go, A. S., Chertow, G. M., Fan, D., McCulloch, C. E., Hsu, C. Y. (2004) Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N. Engl. J. Med. 351, 1296-1305. <https://doi.org/10.1056/NEJMoa041031>
11. Gu, F. F., Lü, S. Z., Chen, Y. D., Zhou, Y. J., Song, X. T., Jin, Z. N., Liu, H. (2009) Relationship between plasma cathepsin S and cystatin C levels and coronary plaque morphology of mild to moderate lesions: an in vivo study using intravascular ultrasound. Chin. Med. J. 122, 2820-2826.
12. Hong, M. K., Mintz, G. S., Lee, C. W., Suh, J., Kim, J. H., Park, D. W., Lee S. W., Kim, Y. H., Cheong, S. S., Kim, J. J., Park, S. W., Park, S. J. (2007) Comparison of virtual histology to intravascular ultrasound of culprit coronary lesions in acute coronary syndrome and target coronary lesions in stable angina pectoris. Am. J. Cardiol. 100, 953-959. <https://doi.org/10.1016/j.amjcard.2007.04.034>
13. Hong, Y. J., Jeong, M. H., Choi, Y. H., Park, S. Y., Rhew, S. H., Jeong, H. C., Cho, J. Y., Jang, S. Y., Lee, K. H., Park, K. H., Sim, D. S., Yoon, N. S., Yoon, H. J., Kim, K. H., Park, H. W., Kim, J. H., Ahn, Y., Cho, J. G., Park, J. C., Kang, J. C. (2013) Comparison of coronary plaque components between non-culprit lesions in patients with acute coronary syndrome and target lesions in patients with stable angina: virtual histology-intravascular ultrasound analysis. Korean Circ. J. 43, 607-614. <https://doi.org/10.4070/kcj.2013.43.9.607>
14. Ix, J. H., Shlipak, M. G., Chertow, G. M., Whooley, M. A. (2007) Association of cystatin C with mortality, cardiovascular events, and incident heart failure among persons with coronary heart disease: data from the Heart and Soul Study. Circulation 115, 173-179. <https://doi.org/10.1161/CIRCULATIONAHA.106.644286>
15. Kiyosue, A., Hirata, Y., Ando, J., Fujita, H., Morita, T., Takahashi, M., Nagata, D., Kohro, T., Imai, Y., Nagai, R. (2010) Plasma cystatin C concentration reflects the severity of coronary artery disease in patients without chronic kidney disease. Circ. J. 74, 2441-2447. <https://doi.org/10.1253/circj.CJ-10-0158>
16. Kleinbongard, P., Heusch, G., Schulz, R. (2010) TNF-α in atherosclerosis, myocardial ischemia/reperfusion and heart failure. Pharmacol. Ther. 127, 295-314. <https://doi.org/10.1016/j.pharmthera.2010.05.002>
17. Koc, M., Batur, M. K., Karaarslan, O., Abali, G. (2010) Clinical utility of serum cystatin C in predicting coronary artery disease. Cardiol. J. 17, 374-380.
18. Kovarnik, T., Kral, A., Skalicka, H., Mintz, G. S., Kralik, L., Chval, M., Horak, J., Skalicka, L., Sonka, M., Wahle, A., Downe, R. W., Uhrova, J., Benakova, H., Cernohousova, L., Martasek, P., Belohlavek, J., Aschermann, M., Linhart, A. (2013) The prediction of coronary artery disease based on non-invasive examinations and heme oxygenase 1 polymorphism versus virtual histology. J. Invasive Cardiol. 25, 32-37.
19. Lee, M., Saver, J. L., Huang, W. H., Chow, J., Chang, K. H., Ovbiagele, B. (2010) Impact of elevated cystatin C level on cardiovascular disease risk in predominantly high cardiovascular risk populations: a meta-analysis. Circ. Cardiovasc. Qual. Outcomes 3, 675-683. <https://doi.org/10.1161/CIRCOUTCOMES.110.957696>
20. Levey, A. S., Bosch, J. P., Lewis, J. B., Greene, T., Rogers, N., Roth, D. (1999) A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann. Intern. Med. 130, 461-470. <https://doi.org/10.7326/0003-4819-130-6-199903160-00002>
21. Li, K., Wu, X., Chen, D. Z., Sonka, M. (2006) Optimal surface segmentation in volumetric images – a graph-theoretic approach. IEEE Trans. Pattern Anal. Mach. Intell. 28, 119-134.
22. Loew, M., Hoffmann, M. M., Koenig, W., Brenner, H., Rothenbacher, D. (2005) Genotype and plasma concentration of cystatin C in patients with coronary heart disease and risk for secondary cardiovascular events. Arterioscler. Thromb. Vasc. Biol. 25, 1470-1474. <https://doi.org/10.1161/01.ATV.0000168416.74206.62>
23. Mintz, G. S., Nissen, S. E., Anderson, W. D., Bailey, S. R., Erbel, R., Fitzgerald, P. J., Pinto, F. J., Rosenfield, K., Siegel, R. J., Tuzcu, E. M., Yock, P. G. (2001) American College of Cardiology clinical expert consensus document on standards for acquisition, measurement and reporting of intravascular ultrasound studies (IVUS). A report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents. J. Am. Coll. Cardiol. 37, 1478-1492. <https://doi.org/10.1016/S0735-1097(01)01175-5>
24. Mintz, G. S., Garcia-Garcia, H. M., Nicholls, S. J., Weissman, N. J., Bruining, N., Crowe, T., Tardif, J. C., Serruys, P. W. (2011) Clinical expert consensus document on standards for acquisition, measurement and reporting of intravascular ultrasound regression/progression studies. EuroIntervention 6, 1123-1130. <https://doi.org/10.4244/EIJV6I9A195>
25. Mulvihill, N. T., Foley, J. B., Murphy, R. T., Curtin, R., Crean, P. A., Walsh, M. (2001) Risk stratification in unstable angina and non-Q wave myocardial infarction using soluble cell adhesion molecules. Heart 85, 623-627. <https://doi.org/10.1136/heart.85.6.623>
26. Murray, S. W., Stables, R. H., Garcia-Garcia, H. M., Grayson, A. D., Shaw, M. A., Perry, R. A., Serruys, P. W., Palmer, N. D. (2014) Construction and validation of a plaque discrimination score from the anatomical and histological differences in coronary atherosclerosis: the Liverpool IVUS-VHEART (Intra Vascular UltraSound-Virtual-Histology Evaluation of Atherosclerosis Requiring Treatment) study. EuroIntervention 10, 815-823. <https://doi.org/10.4244/EIJV10I7A141>
27. Nair, A., Kuban, B. D., Tuzcu, M., Schoenhagen, P., Nissen, S. E., Vince, D. G. (2002) Coronary plaque classification with intravascular ultrasound radiofrequency data analysis. Circulation 106, 2200-2206. <https://doi.org/10.1161/01.CIR.0000035654.18341.5E>
28. Nakashima, Y., Raines, E., Plump, A., Breslow, J. L., Ross, R. (1998) Upregulation of VCAM-1 and ICAM-1 at atherosclerosis- prone sites on the endothelium in the ApoE-deficient mouse. Arterioscler. Thromb. Vasc. Biol. 18, 842-851. <https://doi.org/10.1161/01.ATV.18.5.842>
29. Nerpin, E., Helmersson-Karlqvist, J., Risérus, U., Sundström, J., Larsson, A., Jobs, E., Basu, S., Ingelsson, E., Arnlöv, J. (2012) Inflammation, oxidative stress, glomerular filtration rate, and albuminuria in elderly men: a cross-sectional study. BMC Res. Notes 5, 537. <https://doi.org/10.1186/1756-0500-5-537>
30. Niccoli, G., Conte, M., Della Bona, R., Altamura, L., Siviglia, M., Dato, I., Ferrante, G., Leone, A. M., Porto, I., Burzotta, F., Brugaletta, S., Biasucci, L. M., Crea, F. (2008) Cystatin C is associated with an increased coronary atherosclerotic burden and a stable plaque phenotype in patients with ischemic heart disease and normal glomerular filtration rate. Atherosclerosis 198, 373-380. <https://doi.org/10.1016/j.atherosclerosis.2007.09.022>
31. Patel, D., Ahmad, S., Silverman, A., Lindsay, J. (2013) Effect of cystatin C levels on angiographic atherosclerosis progression and events among postmenopausal women with angiographically decompensated coronary artery disease (from the Women’s Angiographic Vitamin and Estrogen [WAVE] study). Am. J. Cardiol. 111, 1681-1687. <https://doi.org/10.1016/j.amjcard.2013.02.019>
32. Ridker, P., Rifai, N., Pfeffer, M., Sacks, F., Lepage, S., Braunwald, E. (2000) Elevation of tumor necrosis factor-α and increased risk of coronary events after myocardial infarction. Circulation 101, 2149-2153. <https://doi.org/10.1161/01.CIR.101.18.2149>
33. Sai, E., Shimada, K., Miyauchi, K., Masaki,Y., Kojima, T., Miyazaki, T., Kurata, T., Ogita, M., Tsuboi, S., Yoshihara, T., Miyazaki, T., Ohsaka, A., Daida, H. (2016) Increased cystatin C levels as a risk factor of cardiovascular events in patients with preserved estimated glomerular filtration rate after elective percutaneous coronary intervention with drug-eluting stents. Heart Vessels 31, 694-701. <https://doi.org/10.1007/s00380-015-0674-0>
34. Salgado, J. V., Souza, F. L., Salgado, B. J. (2013) How to understand the association between cystatin C levels and cardiovascular disease: imbalance, counterbalance, or consequence? J. Cardiol. 62, 331-335. <https://doi.org/10.1016/j.jjcc.2013.05.015>
35. Shi, G. P., Sukhova, G. K., Grubb, A., Ducharme, A., Rhode, L. H., Lee, R. T., Ridker, P. M., Libby, P., Chapman, H. (1999) Cystatin C deficiency in human atherosclerosis and aortic aneurysm. J. Clin. Invest. 104, 1191-1197. <https://doi.org/10.1172/JCI7709>
36. Shlipak, M. G., Sarnak, M. J., Katz, R., Fried, L. F., Seliger, S. L., Newman, A. B., Siscovick, D. S., Stehman-Breen, C. (2005) Cystatin C and the risk of death and cardiovascular events among elderly persons. N. Engl. J. Med. 352, 2049-2060. <https://doi.org/10.1056/NEJMoa043161>
37. Silva, D., Cortez-Dias, N., Jorge, C., Marques, J. S., Carrilho- Ferreira, P., Magalhães, A., Martins, S. R., Gonçalves, S., da Silva, P. C., Fiúza, M., Diogo, A. N., Pinto, F. J. (2012) Cystatin C as prognostic biomarker in ST-segment elevation acute myocardial infarction. Am. J. Cardiol. 109, 1431-1438. <https://doi.org/10.1016/j.amjcard.2012.01.356>
38. Stevens, L.A., Coresh, J., Greene, T., Levey, A. S. (2006) Assessing kidney function-measured and estimated glomerular filtration rate. N. Engl. J. Med. 354, 2473-83. <https://doi.org/10.1056/NEJMra054415>
39. Stone, G. W., Maehara, A., Lansky, A., de Bruyne, B., Cristea, E., Mintz, G. S., Mehran, R., McPherson, J., Farhat, N., Marso, S. P., Parise, H., Templin, B., White, R., Zhang, Z., Serruys, P. W. (2011) A prospective natural-history study of coronary atherosclerosis. N. Engl. J. Med. 364, 226-235. <https://doi.org/10.1056/NEJMoa1002358>
40. Sun, S., Sonka, M., Beichel, R. R. (2013) Graph-based IVUS segmentation with efficient computer-aided refinement. IEEE Trans. Med. Imaging 32, 1536-1549.
41. Sukhova, G. K., Shi, G. P., Simon, D. I., Chapman, H. A., Libby, P. (1998) Expression of the elastolytic cathepsins S and K in human atheroma and regulation of their production in smooth muscle cells. J. Clin. Invest. 102, 576-583. <https://doi.org/10.1172/JCI181>
42. Sukhova, G. K., Wang, B., Libby, P., Pan, J. H., Zhang, Y., Grubb, A., Fang, K., Chapman, H. A., Shi, G. P. (2005) Cystatin C deficiency increases elastic lamina degradation and aortic dilatation in apolipoprotein E-null mice. Circ. Res. 96, 368-375. <https://doi.org/10.1161/01.RES.0000155964.34150.F7>
43. Svensson-Färbom, P., Almgren, P., Hedblad, B., Engström, G., Persson, M., Christensson, A., Melander, O. (2015) Cystatin C is not causally related to coronary artery disease. PLoS One 10, e0129269. <https://doi.org/10.1371/journal.pone.0129269>
44. Taglieri, N., Koenig, W., Kaski, J. C. (2009) Cystatin C and cardiovascular risk. Clin. Chem. 55, 1932-1943. <https://doi.org/10.1373/clinchem.2009.128397>
45. Urbonaviciene, G., Shi, G. P., Urbonavicius, S., Henneberg, E. W., Lindholt, J. S. (2011) Higher cystatin C level predicts long-term mortality in patients with peripheral arterial disease. Atherosclerosis 216, 440-445. <https://doi.org/10.1016/j.atherosclerosis.2011.02.016>
46. Verdot, L., Lalmanach, G., Vercruysse, V., Hoebeke J., Gauthier, F., Vray, B. (1999) Chicken cystatin stimulates nitric oxide release from interferon-γ activated mouse peritoneal macrophages via cytokine synthesis. Eur. J. Biochem. 266, 1111-1117. <https://doi.org/10.1046/j.1432-1327.1999.00964.x>
47. Virmani, R., Burke, A. P., Farb, A., Kolodgie, F. D. (2006) Pathology of the vulnerable plaque. J. Am. Coll. Cardiol. 47, C13-18. <https://doi.org/10.1016/j.jacc.2005.10.065>
48. Wahle, A., Prause, P. M., DeJong, S. C., Sonka, M. (1999) Geometrically correct 3D reconstruction of intravascular ultrasound images by fusion with biplane angiography – methods and validation. IEEE Trans. Med. Imaging 18, 686-699. <https://doi.org/10.1109/42.796282>
49. Wahle, A., Lopez, J. J., Olszewski, M. E., Vigmostad, S. C., Chandran, K. B., Rossen, J. D., Sonka, M. (2006) Plaque development, vessel curvature, and wall shear stress in coronary arteries assessed by X-ray angiography and intravascular ultrasound. Med. Image Anal. 10, 615-631. <https://doi.org/10.1016/j.media.2006.03.002>
50. Wang, J., Sim, A. S., Wang, X. L., Salonikas, C., Moriatis, M., Naidoo, D., Wilcken, D. E. (2008) Relations between markers of renal function, coronary risk factors and the occurrence and severity of coronary artery disease. Atherosclerosis 197, 853-859. <https://doi.org/10.1016/j.atherosclerosis.2007.07.034>
51. Wang, G. N., Sun, K., Hu, D. L., Wu, H. H., Wang, X. Z., Zhang, J. S. (2014) Serum cystatin C levels are associated with coronary artery disease and its severity. Clin. Biochem. 47, 176-181. <https://doi.org/10.1016/j.clinbiochem.2014.07.013>
52. Xu, Y., Ding, Y., Li, X., Wu, X. (2015) Cystatin C is a disease associated protein subject to multiple regulation. Immunol. Cell. Biol. 93, 442-451. <https://doi.org/10.1038/icb.2014.121>
53. Yin, Y., Zhang, X., Williams, R., Wu, X., Anderson, D. D., Sonka, M. (2010) LOGISMOS – layered optimal graph image segmentation of multiple objects and surfaces: cartilage segmentation in the knee joint. IEEE Trans. Med. Imaging 29, 2023-2037. <https://doi.org/10.1109/TMI.2010.2058861>
54. Zakynthinos, E., Pappa, N. (2009) Inflammatory biomarkers in coronary artery disease. J. Cardiol. 53, 317-333. <https://doi.org/10.1016/j.jjcc.2008.12.007>
55. Zhang, B., Wu, T., Chen, M., Zhou, Y., Yi, D., Guo, R. (2013) The CD40/CD40L system: a new therapeutic target for disease. Immunol. Lett. 153, 58-61. <https://doi.org/10.1016/j.imlet.2013.07.005>
56. Zuo, Y., Yancey, P., Castro, I. Khan, W. N., Motojima, M., Ichikawa, I., Fogo, A. B., Linton, M. F., Fazio, S., Kon, V. (2009) Renal dysfunction potentiates foam cell formation by repressing ABCA1. Arterioscler. Thromb. Vasc. Biol. 29, 1277-1282. <https://doi.org/10.1161/ATVBAHA.109.188995>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Submissions

Archive