Fol. Biol. 2016, 62, 263-267

https://doi.org/10.14712/fb2016062060263

Evaluation of Epidermal Neural Crest Stem Cells in Organotypic Spinal Cord Slice Culture Platform

Sareh Pandamooz1,2, M. S. Saied2, M. Nabiuni1, L. Dargahi3, M. Pourghasem4

1Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
2Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
3NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
4Department of Anatomy and Embryology, Babol University of Medical Sciences, Babol, Iran

Received June 2016
Accepted August 2016

References

1. Amoh, Y., Li, L., Katsuoka, K., Hoffman, R. M. (2008) Multipotent hair follicle stem cells promote repair of spinal cord injury and recovery of walking function. Cell Cycle 7, 1865-1869. <https://doi.org/10.4161/cc.7.12.6056>
2. Cho, S., Wood, A., Bowlby, M. R. (2007) Brain slices as models for neurodegenerative disease and screening platforms to identify novel therapeutics. Curr. Neuropharmacol. 5, 19-33. <https://doi.org/10.2174/157015907780077105>
3. Daviaud, N., Garbayo, E., Schiller, P. C., Perez-Pinzon, M., Montero-Menei, C. N. (2013) Organotypic cultures as tools for optimizing central nervous system cell therapies. Exp. Neurol. 248, 429-440. <https://doi.org/10.1016/j.expneurol.2013.07.012>
4. Dunham, K. A., Floyd, C. L. (2011) Contusion models of spinal cord injury in rats. In: Animal Models of Movement Disorders, Volume II, Springer Protocols 62, 345-362.
5. Hu, Y. F., Gourab, K., Wells, C., Clewes, O., Schmit, B. D., Sieber-Blum, M. (2010) Epidermal neural crest stem cell (EPI-NCSC)-mediated recovery of sensory function in a mouse model of spinal cord injury. Stem Cell Rev. 6, 186-198. <https://doi.org/10.1007/s12015-010-9152-3>
6. Kim, H. M., Lee, H. J., Lee, M. Y., Kim, S. U., Kim, B. G. (2010) Organotypic spinal cord slice culture to study neural stem/progenitor cell microenvironment in the injured spinal cord. Exp. Neurobiol. 19, 106-113. <https://doi.org/10.5607/en.2010.19.2.106>
7. Krassioukov, A. V., Ackery, A., Schwartz, G., Adamchik, Y., Liu, Y., Fehlings, M. G. (2002) An in vitro model of neurotrauma in organotypic spinal cord cultures from adult mice. Brain Res. Brain Res. Protoc. 10, 60-68. <https://doi.org/10.1016/S1385-299X(02)00180-0>
8. Liu, F., Uchugonova, A., Kimura, H., Zhang, C., Zhao, M., Zhang, L., Koenig, K., Duong, J., Aki, R., Saito, N., Mii, S., Amoh, Y., Katsuoka, K., Hoffman, R. M. (2011) The bulge area is the major hair follicle source of nestin-expressing pluripotent stem cells which can repair the spinal cord compared to the dermal papilla. Cell Cycle 10, 830-839. <https://doi.org/10.4161/cc.10.5.14969>
9. Pakan, J. M., McDermott, K. W. (2014) A method to investigate radial glia cell behavior using two-photon time-lapse microscopy in an ex vivo model of spinal cord development. Front. Neuroanat. 8, 22. <https://doi.org/10.3389/fnana.2014.00022>
10. Pandamooz, S., Naji, M., Alinezhad, F., Zarghami, A., Pourghasem, M. (2013) The influence of cerebrospinal fluid on epidermal neural crest stem cells may pave the path for cell-based therapy. Stem Cell Res. Ther. 4, 84. <https://doi.org/10.1186/scrt235>
11. Pandamooz, S., Nabiuni, M., Miyan, J., Ahmadiani, A., Dargahi, L. (2016) Organotypic spinal cord culture: a proper platform for the functional screening. Mol. Neurobiol. 53, 4659-4674. <https://doi.org/10.1007/s12035-015-9403-z>
12. Park, H. W., Lim, M. J., Jung, H., Lee, S. P., Paik, K. S., Chang, M. S. (2010) Human mesenchymal stem cell‐derived Schwann cell‐like cells exhibit neurotrophic effects, via distinct growth factor production, in a model of spinal cord injury. Glia 58, 1118-1132. <https://doi.org/10.1002/glia.20992>
13. Ravikumar, M., Jain, S., Miller, R. H., Capadona, J. R., Selkirk, S. M. (2012) An organotypic spinal cord slice culture model to quantify neurodegeneration. J. Neurosci. Methods 211, 280-288. <https://doi.org/10.1016/j.jneumeth.2012.09.004>
14. Riggio, C., Nocentini, S., Catalayud, M. P., Goya, G. F., Cuschieri, A., Raffa, V., del Río, J. A. (2013) Generation of magnetized olfactory ensheathing cells for regenerative studies in the central and peripheral nervous tissue. Int. J. Mol. Sci. 14, 10852-10868. <https://doi.org/10.3390/ijms140610852>
15. Sahni, V., Kessler, J. A. (2010) Stem cell therapies for spinal cord injury. Nat. Rev. Neurol. 6, 363-372. <https://doi.org/10.1038/nrneurol.2010.73>
16. Sieber‐Blum, M., Grim, M., Hu, Y., Szeder, V. (2004) Pluripotent neural crest stem cells in the adult hair follicle. Dev. Dyn. 231, 258-269. <https://doi.org/10.1002/dvdy.20129>
17. Silva, N. A., Sousa, N., Reis, R. L., Salgado, A. J. (2014) From basics to clinical: a comprehensive review on spinal cord injury. Prog. Neurobiol. 114, 25-57. <https://doi.org/10.1016/j.pneurobio.2013.11.002>
18. Stoppini, L., Buchs, P.-A., Muller, D. (1991) A simple method for organotypic cultures of nervous tissue. J. Neurosci. Methods 37, 173-182. <https://doi.org/10.1016/0165-0270(91)90128-M>
19. Sypecka, J., Koniusz, S., Kawalec, M., Sarnowska, A. (2015) The organotypic longitudinal spinal cord slice culture for stem cell study. Stem Cells Int. 2015, 471216. <https://doi.org/10.1155/2015/471216>
20. Weightman, A. P., Pickard, M. R., Yang, Y., Chari, D. M. (2014) An in vitro spinal cord injury model to screen neuroregenerative materials. Biomaterials 35, 3756-3765. <https://doi.org/10.1016/j.biomaterials.2014.01.022>
21. Zhang, N., Fang, M., Chen, H., Gou, F., Ding, M. (2014) Evaluation of spinal cord injury animal models. Neural Regen. Res. 9, 2008-2012.
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Submissions

Archive