Fol. Biol. 2017, 63, 1-5

https://doi.org/10.14712/fb2017063010001

Morphometric and Densitometric Analysis of Heterochromatin during Cell Differentiation Using the Leukaemic Granulocytic Lineage as a Convenient Model

Karel Smetana, D. Mikulenková, H. Klamová

Institute of Haematology and Blood Transfusion, Prague, Czech Republic

Received July 2016
Accepted November 2016

References

1. Alcobia, I., Dilao, R., Parreira, L. (2000) Spatial associations of centromeres in the nuclei of hematopoietic cells: evidence for cell-type-specific organizational pattern. Blood 95, 1608-1615. <https://doi.org/10.1182/blood.V95.5.1608.005k32_1608_1615>
2. Bessis, M. (1973) Living Blood Cells and Their Ultrastructure. Springer, Berlin.
3. Busch, H., Smetana, K. (1970) The Nucleolus. pp. 448-463. Academic Press, New York.
4. Busch, H. (1974) Introduction. In: The Molecular Biology of Cancer. Ed. Busch, H., pp. 1-39, Academic Press, New York.
5. Cline, M. J. (1975) The White Cell. Harvard University Press, Cambridge, MA.
6. Cohen, A. L., Jia, S. (2014) Noncoding RNAs and the borders of heterochromatin. Wiley Interdiscip. Rev. RNA 5, 836-847. <https://doi.org/10.1002/wrna.1249>
7. Davidson, W. M., Smith, D. R. (1954) Morphological sex difference in the polymorphonuclear neutrophil leucocytes. Br. Med. J. 2, 6-7. <https://doi.org/10.1136/bmj.2.4878.6>
8. De Robertis, E. D. P., Nowinski, W. W., Saez, F. A. (1970) Cell Biology. Sounders, Philadelphia
9. De Robertis, E. D. P., De Robertis, E. M. F. Jr (1987) Cell and Molecular Biology. Lea and Febiger; Philadelphia.
10. DuPraw, E. J. (1966) Evidence for a folded-fibre organization in human chromosomes. Nature 209, 577-581. <https://doi.org/10.1038/209577a0>
11. Goto, T., Monk, M. (1998) Regulation of X-chromosome inactivation in development in mice and humans. Microbiol. Mol. Biol. Rev. 62, 362-378. <https://doi.org/10.1128/MMBR.62.2.362-378.1998>
12. Guillemin, C., Francastel, C (2010) Heterochomatin compartments and gene silencing: human hematopoietic differentiation as a model study. Biol. Aujourdhui 204, 221-233 (in French). <https://doi.org/10.1051/jbio/2010016>
13. Fakan S. (2004). The functional architecture of the nucleus as analysed by ultrastructural cytochemistry. Histochem. Cell Biol. 123, 83-93.
14. Jost, K. L., Bertulat, B., Rapp, A., Brero, A., Hardt, T., Domaing, P., Gösele, C., Scuhlz, H., Hübner, N., Cardoso, C. (2015) Gene repositioning within the cell nucleus is not random and is determined by the genomic neighborhood. Epigenetics Chromatin 8, 36. <https://doi.org/10.1186/s13072-015-0025-5>
15. Politz, J. C. R., Scalzo, D., Groudine, M. (2013) Something silent this way forms: the functional organization of the regressive nuclear compartment. Annu. Rev. Cell Dev. Biol. 29, 241-270. <https://doi.org/10.1146/annurev-cellbio-101512-122317>
16. Politz, J. C. R., Scalzo, D., Groudine, M. (2016) The redundancy of the mammalian heterochomatic compartment. Curr. Opin. Genet. Dev. 37, 1-6. <https://doi.org/10.1016/j.gde.2015.10.007>
17. Smetana, K., Mikulenková, D., Klamová, H. (2011) Heterochromatin density (condensation) during cell differentiation and maturation using the human granulocyttic lineage of chronic myeloid leukaemia as a convenient model. Folia Biol. (Praha) 57, 216-221.
18. Smetana, K., Klamová, H., Jirásková, I., Mikulenková, D., Zápotocký, M., Hrkal, Z. (2012) The DNA chromatin condensation expressed by the image optical density of chromosomes and chromatin in proliferating single human leukemic granulocytic progenitors. J. Appl. Biomed. 10, 103-108. <https://doi.org/10.2478/v10136-012-0007-x>
19. Undritz, E. (1972) Hämatologische Tafeln Sandoz. Sandoz, Basel, Switzerland. (in German)
20. Wittekind, O. H. (1983) On the nature of Romanowsky-Giemsa staining and its significance for cytochemistry and histochemistry: an overall view. Histochem. J. 15, 1029-1047. <https://doi.org/10.1007/BF01002498>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Archive