Fol. Biol. 2017, 63, 42-51

https://doi.org/10.14712/fb2017063020042

Moringa olifeira Lam. Stimulates Activation of the Insulin-Dependent Akt Pathway. Antidiabetic Effect in a Diet-Induced Obesity (DIO) Mouse Model

Eugène Sèlidji Attakpa1,2, M. M. Sangaré2, G. J. Béhanzin2, J.-M. Ategbo2, B. Seri3, N. A. Khan1

1INSERM U866, Physiologie de la Nutrition & Toxicologie. Université de Bourgogne, Dijon, France
2Laboratoire de Physiopathologie Moléculaire et Toxicologie, Département de Physiologie Animale, Faculté des Sciences et Techniques, Université d’Abomey Calavi Cotonou, Rép. du Bénin
3Laboratoire de Neurosciences, Unité de Formation Biosciences 22 BP 582 Abidjan 22, Université de Cocody-Abidjan, Rép. de Côte-d’Ivoire

Received June 2016
Accepted January 2017

References

1. Aledo, J., Lavoie, L., Volchuk, A., Keller, S. R., Klip, A., Hundal, H. S. (1997) Identification and characterization of two distinct intracellular GLUT4 pools in rat skeletal muscle: evidence for an endosomal and an insulin-sensitive GLUT4 compartment. Biochem. J. 325, 727-732. <https://doi.org/10.1042/bj3250727>
2. Baumann, C. A., Ribon, V., Kanzaki, M., Thurmond, D. C., Mora, S., Shigematsu, S., Bickel, P. E., Pessin, J. E., Saltiel, A. R. (2000) CAP defines a second signalling pathway required for insulin-stimulated glucose transport. Nature 14, 202-207. <https://doi.org/10.1038/35025089>
3. Brahmachari, G. (2011) Six bio-flavonoids with promising antidiabetic potentials: a critical survey. In Opportunity, Challenge and Scope of Natural Products in Medicinal Chemistry. Ed. V. K. Tiwari, pp. 187-212, Research Signpost, Kerala, India.
4. Brassard, P., Robinson, E., Lavallee, C. (1993) Prevalence of diabetes mellitus among the James Bay Cree of northern Quebec. CMAJ 3, 303-307.
5. Buettner, R., Schölmerich, J., Bollheimer, L. C. (2007) Highfat diets: modeling the metabolic disorders of human obesity in rodents. Obesity (Silver Spring) 15, 798-808. <https://doi.org/10.1038/oby.2007.608>
6. Cano, N. B. D., Schneider, S. M., Vasson, M. P., Hasselmann, M., Leverve, X. (2007) Traité de nutrition artificielle de l’adulte. Springer-Verlag, Paris, France. (in French)
7. Dimo, T., Rakotonirina S. V., Tan P. V., Azay, J., Dongo, E., Kamtchouing, P., Cros, G. (2007) Effect of Sclerocarya birrea (Anacardiaceae) stem bark methylene chloride/ methanol extract on streptozotocin-diabetic rats. J. Ethnopharmacol. 110, 434-438. <https://doi.org/10.1016/j.jep.2006.10.020>
8. Fatehi-Hassanabad, Z., Chan, C. B. (2005) Transcriptional regulation of lipid metabolism by fatty acids: a key determinant of pancreatic β-cell function. Nutr. Metab. (Lond.) 5, 21-31.
9. Foretz, M., Taleux, N., Guigas, B., Horman, S., Beauloye, C., Andreelli, F., Bertrand, L., Viollet, B. (2006) Regulation of energy metabolism by AMPK: a novel therapeutic approach for the treatment of metabolic and cardiovascular diseases. Med. Sci. (Paris) 22, 381-388. <https://doi.org/10.1051/medsci/2006224381>
10. Galvez Peralta, J., Zarzuelo, A., Busson, R., Cobbaert, C., de Witte, P. (1992) (K)-Epicatechin-3-galloyl ester: a secretagogue compound from the bark of Sclerocarya birrea. Planta Medica 58, 174-175. <https://doi.org/10.1055/s-2006-961423>
11. Gondwe, M., Kamadyaapa, D. R., Tufts, M., Chuturgoon, A. A., Musabayane, C. T. (2008) Sclerocarya birrea [(A. Rich.) Hochst.] [Anacardiaceae] stem-bark ethanolic extract (SBE) modulates blood glucose, glomerular filtration rate (GFR) and mean arterial blood pressure (MAP) of STZ-induced diabetic rats. Phytomedicine 15, 699-709. <https://doi.org/10.1016/j.phymed.2008.02.004>
12. Jiang, G. Z. B. (2003) Glucagon and regulation of glucose metabolism. Am. J. Physiol. Endocrinol. Metab. 4, E671-E678. <https://doi.org/10.1152/ajpendo.00492.2002>
13. Karlsson, H. K., Zierath, J. R., Kane, S., Krook, A., Lienhard, G. E., Wallberg-Henriksson, H. (2005) Insulin-stimulated phosphorylation of the Akt substrate AS160 is impaired in skeletal muscle of type 2 diabetic subjects. Diabetes 6, 1692-1697. <https://doi.org/10.2337/diabetes.54.6.1692>
14. Kersten, S. (2001) Mechanisms of nutritional and hormonal regulation of lipogenesis. EMBO Rep. 2, 282-286. <https://doi.org/10.1093/embo-reports/kve071>
15. Kohjima, M., Higuchi, N., Kato, M, Kotoh, K., Yoshimoto, T., Fujino, T., Yada, M., Yada, R., Harada, N., Enjoji, M., Takayanagi, R., Nakamuta, M. (2008) SREBP-1c, regulated by the insulin and AMPK signaling pathways, plays a role in nonalcoholic fatty liver disease. Int. J. Mol. Med. 21, 507-511.
16. Kumar, S., Malhotra, R., Kumar, D. (2010) Antidiabetic and free radicals scavenging potential of Euphorbia hirta flower extract. Indian J. Pharm. Sci. 72, 533-537. <https://doi.org/10.4103/0250-474X.73921>
17. Mukherjee, P., Maiti, K., Mukherjee, K., Houghton, P. (2006) Leads from Indian medicinal plants with hypoglycemic potentials. J. Ethnopharmacol. 106, 1-28. <https://doi.org/10.1016/j.jep.2006.03.021>
18. Nesher, R., Karl I. E., Kipnis, D. M. (1985) Dissociation of effects of insulin and contraction on glucose transport in rat epitrochlearis muscle. Am. J. Physiol. 249, C226-C232. <https://doi.org/10.1152/ajpcell.1985.249.3.C226>
19. Ojewole, J. A. (2003) Hypoglycemic effect of Sclerocarya birrea [(A. Rich.) Hochst.] [Anacardiaceae] stem-bark aqueous extract in rats. Phytomedicine 10, 675-681. <https://doi.org/10.1078/0944-7113-00295>
20. Pagliassoti, M. J., Knobel, S. M., Shahrokhi, K. A., Manzo, A. M., Hill, J. O. (1994) Time course of adaptation to a highfat diet in obesity-resistant and obesity-prone rats. Am. J. Physiol. 267, 659-664.
21. Pan, X. R., Li, G. W., Hu, Y. H., Wang, J. X., Yang, W. Y., An, Z. X., Hu, Z. X, Lin, J., Xiao, J. Z., Cao, H. B., Liu, P. A., Jiang, X. G., Jiang, Y. Y., Wang, J. P., Zheng, H., Zhang, H., Bennett, P. H., Howard, B. V. (1997) Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study. Diabetes Care 4, 537-544. <https://doi.org/10.2337/diacare.20.4.537>
22. Ploug, T., Galbo, H., Richter, E. A. (1984) Increased muscle glucose uptake during contractions: no need for insulin. Am. J. Physiol. 6, E726-E731.
23. Poynter, M. E., Daynes, R. A. (1998) Peroxisome proliferatoractivated receptor α activation modulates cellular redox status, represses nuclear factor-κB signaling, and reduces inflammatory cytokine production in aging. J. Biol. Chem. 273, 32833-32841. <https://doi.org/10.1074/jbc.273.49.32833>
24. Ranjan, C., Reeba, K., Mullangi, R., Sharma, V. M., Jagadheshan, H., Rao, Y. N. (2002) Antidiabetic and hypolipidemic activity of Helicteres isora in animal models. J. Ethnopharmacol. 81, 343–349.
25. Samuel, V. T., Liu, Z. X., Qu, X., Elder, B. D., Bilz, S, Befroy, D., Romanelli, A .J., Shulman, G. I. (2004) Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. J. Biol. Chem. 31, 32345-32353. <https://doi.org/10.1074/jbc.M313478200>
26. Spoor, D. C., Martineau, L. C., Leduc, C., Benhaddou-Andaloussi, A., Meddah, B., Harris, C., Burt, A., Fraser, M. H., Coonishish, J., Joly, E., Cuerrier, A., Bennett, S. A., Johns, T., Prentki, M., Arnason, J. T., Haddad, P. S. (2006) Selected plant species from the Cree pharmacopoeia of northern Quebec possess antidiabetic potential. Can. J. Physiol. Pharmacol. 84, 847-858. <https://doi.org/10.1139/y06-018>
27. Toma, A. (2013) Recent advances on novel dual-acting peroxisome proliferator-activated receptor α and γ agonists. Int. J. Pharm. Sci. Res. 4, 1644-1653.
28. Toma, A., Makonnen, E., Mekonnen, Y., Debella, A., Adisakwattana, S. (2014) Intestinal α-glucosidase and some pancreatic enzymes inhibitory effect of hydroalcholic extract of Moringa stenopetala leaves. BMC Complement. Altern. Med. 14, 1472-1480. <https://doi.org/10.1186/1472-6882-14-180>
29. Tsuneki, H., Ishizuka, M., Terasawa, M., Wu, J.B., Sasaoka, T., Kimura, I. (2004) Effect of green tea on blood glucose levels and serum proteomic patterns in diabetic (db/db) mice and on glucose metabolism in healthy humans. BMC Pharmacology 4, 18. <https://doi.org/10.1186/1471-2210-4-18>
30. Upendra, M., Sreenivasulu, M., Chengaiah, B. (2010) Microvascular and macro-vascular complication of diabetes mellitus. IJPRIF 2, 1883-1892.
31. Wahli, W. (2002) Peroxisome proliferator-activated receptors (PPARs): from metabolic control to epidermal wound healing. Swiss Med. Wkly. 132, 83-91.
32. Wallberg-Henriksson, H., Zierath, J. (2001) GLUT4: a key player regulating glucose homeostasis? Insights from transgenic and knockout mice. Mol. Membr. Biol. 3, 205-211. <https://doi.org/10.1080/09687680110072131>
33. Wild, S., Roglic, G., Green, A., Sicree, R., King, H. (2004) Global prevalence of diabetes. Diabetes Care 27, 1047-1053. <https://doi.org/10.2337/diacare.27.5.1047>
34. Winder, W. W, Hardie, D. G. (1999) AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes. Am. J. Physiol. 277, E1-E10.
35. Yahagi, N., Shimano H., Hasty, A. H., Matsuzaka, T., Ide, T., Yoshikawa, T., Amemiya-Kudo, M., Tomita, S., Okazaki, H., Tamura, Y., Lizuka, Y., Ohashi, K., Osuga, J., Harada, K., Gotoda, T., Nagai, R., Ishibashi, S., Yamada, N. (2002) Absence of sterol regulatory element-binding protein-1 (SREBP-1) ameliorates fatty livers but not obesity or insulin resistance in Lep(ob)/Lep(ob) mice. J. Biol. Chem. 277, 19353-19357. <https://doi.org/10.1074/jbc.M201584200>
36. Zambon, A., Gervois P., Pauletto, P., Fruchart, J. C., Staels, B. (2006) Modulation of hepatic inflammatory risk markers of cardiovascular diseases by PPARα activators: clinical and experimental evidence. Arterioscler. Thromb. Vasc. Biol. 26, 977-986. <https://doi.org/10.1161/01.ATV.0000204327.96431.9a>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Archive