Fol. Biol. 2017, 63, 105-114

https://doi.org/10.14712/fb2017063030105

Glycation of Matrix Proteins in the Artery Inhibits Migration of Smooth Muscle Cells from the Media to the Intima

Aleksandra Kuzan1, O. Michel1, A. Gamian1,2

1Department of Medical Biochemistry, Wroclaw Medical University, Wrocław, Poland
2Laboratory of Medical Microbiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland

Received November 2016
Accepted April 2017

References

1. Aronson, D. (2003) Cross-linking of glycated collagen in the pathogenesis of arterial and myocardial stiffening of aging and diabetes. J. Hypertens. 21, 3-12. <https://doi.org/10.1097/00004872-200301000-00002>
2. Avery, N. C., Bailey, A. J. (2006) The effects of the Maillard reaction on the physical properties and cell interactions of collagen. Pathol. Biol. (Paris) 54, 387-395. <https://doi.org/10.1016/j.patbio.2006.07.005>
3. Avery, N. C., Bailey, A. J. (2008) Restraining cross-links responsible for the mechanical properties of collagen fibers: natural and artificial. In: Collagen Structure and Mechanics, ed. Fratzl, P., pp. 81-111, Springer Science+Business Media, Potsdam. Germany.
4. Bartling, B., Desole, M., Rohrbach, S., Silber, R. E., Simm, A. (2009) Age-associated changes of extracellular matrix collagen impair lung cancer cell migration. FASEB J. 23, 1510-1520. <https://doi.org/10.1096/fj.08-122648>
5. Butoi, E., Gan, A. M., Manduteanu, I. (2014) Molecular and functional interactions among monocytes/macrophages and smooth muscle cells and their relevance for atherosclerosis. Crit. Rev. Eukaryot. Gene Expr. 24, 341-355. <https://doi.org/10.1615/CritRevEukaryotGeneExpr.2014012157>
6. Chepelenko, G. V. (2015) Atherosclerosis regulation via media lipid-driven VSMC cholesterol efflux switch. Med. Hypotheses 84, 141-144. <https://doi.org/10.1016/j.mehy.2014.12.002>
7. Chiong, M., Cartes-Saavedra, B., Norambuena-Soto, I., Mondaca- Ruff, D., Morales, P. E., García-Miguel, M., Mellado, R. (2014) Mitochondrial metabolism and the control of vascular smooth muscle cell proliferation. Front. Cell Dev. Biol. 2, 72. <https://doi.org/10.3389/fcell.2014.00072>
8. Chung, T. W., Choi, H. J., Kim, C. H., Jeong, H. S., Ha, K. T. (2013) Lipocalin-2 elicited by advanced glycation endproducts promotes the migration of vascular smooth muscle cells. Biochim. Biophys. Acta 1833, 3386-3395. <https://doi.org/10.1016/j.bbamcr.2013.10.011>
9. Dan, Q., Wong, R., Chung, S. K., Chung, S. S., Lam, K. S. (2004) Interaction between the polyol pathway and nonenzymatic glycation on aortic smooth muscle cell migration and monocyte adhesion. Life Sci. 76, 445-459. <https://doi.org/10.1016/j.lfs.2004.09.010>
10. Francis-Sedlak, M. E., Uriel, S., Larson, J. C., Greisler, H. P., Venerus, D. C., Brey, E. M. (2009) Characterization of type I collagen gels modified by glycation. Biomaterials 30, 1851-1856. <https://doi.org/10.1016/j.biomaterials.2008.12.014>
11. Greenwald, S. E. (2007) Ageing of the conduit arteries. J. Pathol. 211, 157-172. <https://doi.org/10.1002/path.2101>
12. Haucke, E., Navarrete-Santos, A., Simm, A., Silber, R. E., Hofmann, B. (2014) Glycation of extracellular matrix proteins impairs migration of immune cells. Wound Repair Regen. 22, 239-245. <https://doi.org/10.1111/wrr.12144>
13. Jabłońska-Trypuć, A., Czerpak, R. (2007) The role of nonenzymatic glycosylation of proteins in ageing processes and pathogenesis of geriatric diseases. Post. Biol. Kom. 34, 683-693. (in Polish)
14. Kohn, J. C., Lampi, M. C., Reinhart-King, C. A. (2015) Agerelated vascular stiffening: causes and consequences. Front. Genet. 6, 112. <https://doi.org/10.3389/fgene.2015.00112>
15. Liao, H., Zakhaleva, J., Chen, W. (2009) Cells and tissue interactions with glycated collagen and their relevance to delayed diabetic wound healing. Biomaterials 30, 1689-1696. <https://doi.org/10.1016/j.biomaterials.2008.11.038>
16. Meerwaldt, R., van der Vaart, M. G., van Dam, G. M., Tio, R. A., Hillebrands, J. L., Smit, A. J., Zeebregts, C. J. (2008) Clinical relevance of advanced glycation end products for vascular surgery. Eur. J. Vasc. Endovasc. Surg. 36, 125-131. <https://doi.org/10.1016/j.ejvs.2008.01.030>
17. Monk, B. A., George, S. J. (2015) The effect of ageing on vascular smooth muscle cell behaviour – a mini-review. Gerontology 61, 416-426. <https://doi.org/10.1159/000368576>
18. Monnier, V.M., Taniguchi, N. (2016) Advanced glycation in diabetes, aging and age-related diseases: conclusions. Glycoconj. J. 33, 691-692. <https://doi.org/10.1007/s10719-016-9711-1>
19. Slatter, D. A., Avery, N. C., Bailey, A. J. (2008) Collagen in its fibrillar state is protected from glycation. Int. J. Biochem. Cell Biol. 40, 2253-2263. <https://doi.org/10.1016/j.biocel.2008.03.006>
20. Stary, H. C., Blankenhorn, D. H., Chandler, A. B., Glagov, S., Insull, W. Jr., Richardson, M., Rosenfeld, M. E., Schaffer, S. A., Schwartz, C. J., Wagner, W. D., Wissler, R. W. (1992) A definition of the intima of human arteries and of its atherosclerosis-prone regions: a report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 85, 391-405. <https://doi.org/10.1161/01.CIR.85.1.391>
21. Stary, H. C., Chandler, A., Glagov, S., Guyton, J., Insull, W., Rosenfeld, M., Schaffer, S., Schwartz, C., Wagner, W., Wissler, R. (1994) A definition of initial, fatty streak and intermediate lesions of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Atherosclerosis, American Heart Association. Arterioscler. Thromb. 14, 840-856. <https://doi.org/10.1161/01.ATV.14.5.840>
22. Stephen, E. A., Venkatasubramaniam, A., Good, T. A., Topoleski, L. D. (2014) The effect of glycation on arterial microstructure and mechanical response. J. Biomed. Mater. Res. A 102, 2565-2572. <https://doi.org/10.1002/jbm.a.34927>
23. Tukaj, C. (2010) The role of muscle cells in the pathogenesis of atherosclerotic lesions. Post. Nauk. Med. 4, 337-341. (in Polish)
24. Wall, V. Z., Bornfeldt, K. E. (2014) Arterial smooth muscle. Arterioscler. Thromb. Vasc. Biol. 34, 2175-2179. <https://doi.org/10.1161/ATVBAHA.114.304441>
25. Xiao, H., Cai, G., Liu, M. (2007) Fe2+-catalyzed non-enzymatic glycosylation alters collagen conformation during AGE-collagen formation in vitro. Arch. Biochem. Biophys. 468, 183-192. <https://doi.org/10.1016/j.abb.2007.08.035>
26. Yamagishi, S. (2011) Role of advanced glycation end products (AGEs) and receptor for AGEs (RAGE) in vascular damage in diabetes. Exp. Gerontol. 46, 217-224. <https://doi.org/10.1016/j.exger.2010.11.007>
27. Yuen, A., Laschinger, C., Talior, I., Lee, W., Chan, M., Birek, J., Young, E. W., Sivagurunathan, K., Won, E., Simmons, C. A., McCulloch, C. A. (2010) Methylglyoxal-modified collagen promotes myofibroblast differentiation. Matrix Biol. 29, 537-548. <https://doi.org/10.1016/j.matbio.2010.04.004>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Submissions

Archive