Fol. Biol. 2017, 63, 85-90

https://doi.org/10.14712/fb2017063030085

Microglia: Physiological Functions Revealed through Morphological Profiles

K. Cho1, Go-Eun Choi2

1Granduate School of International Studies, Dong-A University, Busan, Republic of Korea
2Institute of Convergence Bio-Health, Dong-A University, Busan, Republic of Korea

Received February 2017
Accepted March 2017

Crossref Cited-by Linking

  • Zhang Li, Dong Wei, Li Jingwen, Gao Shan, Sheng Hanxuan, Kong Qi, Guan Feifei, Zhang Lianfeng: C1ql3 knockout affects microglia activation, neuronal integrity, and spontaneous behavior in Wistar rats. Anim Models and Exp Med 2024. <https://doi.org/10.1002/ame2.12383>
  • Haywood Robert E.: Glial cells of the central and peripheral nervous systems: An overview of existing research. Journal of Applied Neurosciences 2024, 3. <https://doi.org/10.4102/jan.v3i1.13>
  • Cruz-Mendoza Fernando, Luquin Sonia, García-Estrada Joaquín, Fernández-Quezada David, Jauregui-Huerta Fernando: Acoustic Stress Induces Opposite Proliferative/Transformative Effects in Hippocampal Glia. IJMS 2023, 24, 5520. <https://doi.org/10.3390/ijms24065520>
  • Dyne Eric, Cawood Meghan, Suzelis Matthew, Russell Reagan, Kim Min\u2010Ho: Ultrastructural analysis of the morphological phenotypes of microglia associated with neuroinflammatory cues. J of Comparative Neurology 2022, 530, 1263. <https://doi.org/10.1002/cne.25274>
  • Ton Son T., Laghi Julia R., Tsai Shih-Yen, Blackwell Ashley A., Adamczyk Natalie S., Osterlund Oltmanns Jenna R., Britten Richard A., Wallace Douglas G., Kartje Gwendolyn L.: Exposure to 5 cGy 28Si Particles Induces Long-Term Microglial Activation in the Striatum and Subventricular Zone and Concomitant Neurogenic Suppression. Radiation Research 2022, 198. <https://doi.org/10.1667/RADE-21-00021.1>
  • Cruz-Mendoza Fernando, Jauregui-Huerta Fernando, Aguilar-Delgadillo Adriana, García-Estrada Joaquín, Luquin Sonia: Immediate Early Gene c-fos in the Brain: Focus on Glial Cells. Brain Sciences 2022, 12, 687. <https://doi.org/10.3390/brainsci12060687>
  • Chang Xiaoru, Li Jiangyan, Niu Shuyan, Xue Yuying, Tang Meng: Neurotoxicity of metal\u2010containing nanoparticles and implications in glial cells. J of Applied Toxicology 2021, 41, 65. <https://doi.org/10.1002/jat.4037>
  • Wang Ya-lin, Wu Hao-ran, Zhang Shan-shan, Xiao Hong-lei, Yu Jin, Ma Yuan-yuan, Zhang Yao-dong, Liu Qiong: Catalpol ameliorates depressive-like behaviors in CUMS mice via oxidative stress-mediated NLRP3 inflammasome and neuroinflammation. Transl Psychiatry 2021, 11. <https://doi.org/10.1038/s41398-021-01468-7>
  • Zhou Lu, Wang Dongsheng, Qiu Xinjian, Zhang Weiru, Gong Zhicheng, Wang Yang, Xu Xia: DHZCP Modulates Microglial M1/M2 Polarization via the p38 and TLR4/NF-\u03baB Signaling Pathways in LPS-Stimulated Microglial Cells. Front. Pharmacol. 2020, 11. <https://doi.org/10.3389/fphar.2020.01126>
  • Holloway Olivia G., Canty Alison J., King Anna E., Ziebell Jenna M.: Rod microglia and their role in neurological diseases. Seminars in Cell & Developmental Biology 2019, 94, 96. <https://doi.org/10.1016/j.semcdb.2019.02.005>
  • Hoshi Takayuki, Toyama Takashi, Naganuma Akira, Hwang Gi-Wook: Methylmercury causes neuronal cell death via M1-microglial activation in organotypic slices prepared from mouse cerebral cortex. Fundam. Toxicol. Sci. 2019, 6, 167. <https://doi.org/10.2131/fts.6.167>
  • Peón Alberto N., Terrazas Luis I.: Neuro-Immune-Endocrine Interactions in Multiple Sclerosis. NIB 2018, 7, 55. <https://doi.org/10.3233/NIB-170130>
Crossref Cited-by Linking logo