Fol. Biol. 2017, 63, 132-138
https://doi.org/10.14712/fb2017063040132
The Differentiation Potential of Human Natal Dental Pulp Stem Cells into Insulin-Producing Cells
References
1. 2011) Natal and neonatal teeth: a retrospective study of 15 cases. Eur. J. Dent. 5, 168-172.
, N.N., Kagathur, U., Basavanthappa, R. N., Suryaprakash, S. T. (
2. 2004) Effects of serum and serum heat-inactivation on human bone derived osteoblast progenitor cells. J. Mater. Sci. Mater. Med. 15, 497-501.
< , A., Tobler, U., Halg, M., Grűnert, J. (https://doi.org/10.1023/B:JMSM.0000021127.62879.a1>
3. 2007) Comparative analysis of in vitro conditions for rat adult neural progenitor cells. J. Neurosci. Methods 161, 250-258.
< , C., Tronnier, V., Unterberg, A., Herold-Mende, C. (https://doi.org/10.1016/j.jneumeth.2006.11.012>
4. 2014) Generation of insulin-producing cells from human bone marrow-derived mesenchymal stem cells: comparison of three differentiation protocols. Biomed. Res. Int. 2014:832736.
, M. M., Zakaria, M. M., Refaie, A. F., Khater, S. M., Ashamallah, S. A., Ismail, A. M., El-Badri, N., Ghoneim, M. A. (
5. 2011) Differentiation of dental pulp stem cells into islet-like aggregates. J. Dent. Res. 90, 646-652.
< , V., Ronald, V. S., Abdullah, A. N., Nathan, K. R., Ab Aziz, Z. A., Abdullah, M., Musa, S., Kasim, N. H., Bhonde, R. R. (https://doi.org/10.1177/0022034510396879>
6. 2006) FDA regulation of stem cell-based therapies. New Engl. J. Med. 355, 1730-1735.
< , D. G., Kessler, D. A. (https://doi.org/10.1056/NEJMhpr063086>
7. 2013) Cholestatic effect of epigallocatechin gallate in rats is mediated via decreased expression of Mrp2. Toxicology 303, 9-15.
< , P., Karlasova, G., Dolezelova, E., Cermanova, J., Zagorova, M., Kadova, Z., Hroch, M., Sispera, L., Tomsik, P., Lenicek, M., Vitek, L., Pavek, P., Kucera, O., Cervinkova, Z., Micuda, S. (https://doi.org/10.1016/j.tox.2012.10.018>
8. 2008) Isolation and characterization of dental pulp stem cells from a supernumerary tooth. J. Oral Pathol. Med. 37, 571–574.
< , A. H., Chen, Y. K., Lin, L. M., Shieh, T. Y., Chan, A. W. (https://doi.org/10.1111/j.1600-0714.2008.00654.x>
9. 2009) Plasticity of stem cells derived from adult periodontal ligament. Regen. Med. 4, 809-821.
< , C. Y., Pelaez, D., Dominguez-Bendala, J., Garcia-Godoy, F., Cheung, H. S. (https://doi.org/10.2217/rme.09.55>
10. 2013) Natal and neonatal teeth among cleft lip and palate infants. J. Maxillofac. Surg. 4, 73-76.
< , M., Kadam, D., Bhandary, S., Hukkeri, R. Y. (https://doi.org/10.4103/0975-5950.117883>
11. 2010) Isolation and in vitro characterization of dental pulp stem cells from natal teeth. Histochem. Cell Biol. 133, 95-111.
< , E., Doğan, B. N., Aksoy, A., Gacar, G., Akyüz, S., Ayhan, S., Genç, Z. S., Yürüker, S., Duruksu, G., Demircan, P. C., Sariboyaci, A. E. (https://doi.org/10.1007/s00418-009-0646-5>
12. 2006) The effect of whole organ pancreas transplantation and PIT on diabetic complications. Curr. Diab. Rep. 6, 323-327.
< , T. C., Barshes, N. R., Agee, E. E., O’Mahoney, C. A., Brunicardi. F. C., Goss, J. A. (https://doi.org/10.1007/s11892-006-0068-x>
13. 2014) Immunomodulatory properties of dental tissue-derived mesenchymal stem cells. Oral Dis. 20, 25-34.
< , Z., Jiang, C. M., An, S., Cheng, Q., Huang, Y. F., Wang, Y. T., Gou, Y. C., Xiao, L., Yu, W. J., Wang, J. (https://doi.org/10.1111/odi.12086>
14. 2009) In-vitro (re)programming of human bone marrow stromal cells toward insulin-producing phenotypes. Pediatr. Diabetes 10, 413-419.
< , C., Seufert, J. (https://doi.org/10.1111/j.1399-5448.2009.00502.x>
15. 2013) Differentiation of human adipose-derived mesenchymal stem cell into insulin-producing cells: an in vitro study. J. Physiol. Biochem. 69, 451-458.
< , P. R., Emami, S. H., Sharifi, A. M. (https://doi.org/10.1007/s13105-012-0228-1>
16. 2014) A feasibility study of an in vitro differentiation potential toward insulin-producing cells by dental tissue-derived mesenchymal stem cells. Biochem. Biophys. Res. Commun. 452, 581-587.
< , C., Nowwarote, N., Pavasant, P., Chansiripornchai, P., Osathanon, T. (https://doi.org/10.1016/j.bbrc.2014.08.121>
17. 2004) Natal and neonatal teeth. Acta Medica (Hradec Kralove) 247, 229-233.
< , A. L., Ivancakova, R. (https://doi.org/10.14712/18059694.2018.96>
18. 2013) The effect of fetal calf serum on human dental pulp stem cells. Acta Medica (Hradec Kralove) 56, 142-149.
< , J., Kleplová, T. S., Kapitán, M., Soukup, T. (https://doi.org/10.14712/18059694.2014.9>
19. 2016) Proliferative capacity and phenotypical alteration of multipotent ecto-mesenchymal stem cells from human exfoliated deciduous teeth cultured in xenogeneic and allogeneic media. Folia Biol. (Praha) 62, 1-14.
, J., Suchánková Kleplová, T., Řeháček, V., Browne, K. Z, Soukup, T. (
20. 2006) Chromatinremodeling factors allow differentiation of bone marrow cells into insulin-producing cells. Stem Cell 24, 2858-2867.
, T., Ma, B., Rohde, M., Mayer, H. (
21. 1999) Clinical and ultrastructural study of natal and neonatal teeth. J. Clin. Pediatr. Dent. 23, 173-177.
, M., Olmez, S., Ozturk, H., Celik, H. (
22. 2017) A survey of natal and neonatal teeth in newborn infants. J. Formos. Med. Assoc. 116, 193-196.
< , C. H., Lin, Y. T., Lin, Y. J. (https://doi.org/10.1016/j.jfma.2016.03.009>