Fol. Biol. 2017, 63, 121-131

https://doi.org/10.14712/fb2017063040121

How to Crack the Sugar Code

H.-J. Gabius

Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany

Received October 2017
Accepted October 2017

References

1. Abed, J., Emgard, J. E., Zamir, G., Faroja, M., Almogy, G., Grenov, A., Sol, A., Naor, R., Pikarsky, E., Atlan, K. A., Mellul, A., Chaushu, S., Manson, A. L., Earl, A. M., Ou, N., Brennan, C. A., Garrett, W. S., Bachrach, G. (2016) Fap2 mediates Fusobacterium nucleatum colorectal adenocarcinoma enrichment by binding to tumor-expressed Gal-GalNAc. Cell Host & Microbe 20, 215-225. <https://doi.org/10.1016/j.chom.2016.07.006>
2. Alley, W. R., Jr., Mann, B. F., Novotny, M. V. (2013) Highsensitivity analytical approaches for the structural characterization of glycoproteins. Chem. Rev. 113, 2668-2732. <https://doi.org/10.1021/cr3003714>
3. Amano, M., Eriksson, H., Manning, J.C., Detjen, K.M., André, S., Nishimura, S.-I., Lehtiö, J., Gabius, H.-J. (2012) Tumour suppressor p16INK4a: anoikis-favouring decrease in N/O-glycan/cell surface sialylation by down-regulation of enzymes in sialic acid biosynthesis in tandem in a pancreatic carcinoma model. FEBS J. 279, 4062-4080. <https://doi.org/10.1111/febs.12001>
4. Artigas, G., Hinou, H., Garcia-Martin, F., Gabius, H.-J., Nishimura, S.-I. (2017) Synthetic mucin-like glycopeptides as versatile tools to measure effects of glycan structure/ density/position on the interaction with adhesion/growthregulatory galectins in arrays. Chem. Asian J. 12, 159-167. <https://doi.org/10.1002/asia.201601420>
5. Barondes, S. H. (1988) Bifunctional properties of lectins: lectins redefined. Trends Biochem. Sci. 13, 480-482. <https://doi.org/10.1016/0968-0004(88)90235-6>
6. Bennett, H. S. (1963) Morphological aspects of extracellular polysaccharides. J. Histochem. Cytochem. 11, 14-23. <https://doi.org/10.1177/11.1.14>
7. Bhide, G. P., Colley, K. J. (2017) Sialylation of N-glycans: mechanism, cellular compartmentalization and function. Histochem. Cell Biol. 147, 149-174. <https://doi.org/10.1007/s00418-016-1520-x>
8. Boyd, W. C. (1954) The proteins of immune reactions. In: The Proteins, eds. Neurath, H., Bailey, K., pp. 756-844, Academic Press, New York.
9. Brockhausen, I., Schachter, H. (1997) Glycosyltransferases involved in N- and O-glycan biosynthesis. In: Glycosciences: Status and Perspectives, eds. Gabius, H.-J., Gabius, S., pp. 79-113, Chapman & Hall, London - Weinheim.
10. Brown, G. D., Crocker, P. R. (2016) Lectin receptors expressed on myeloid cells. Microbiol. Spectr. 4, 36. <https://doi.org/10.1128/microbiolspec.MCHD-0036-2016>
11. Buddecke, E. (2009) Proteoglycans. In: The Sugar Code. Fundamentals of Glycosciences, ed. Gabius, H.-J., pp. 199- 216, Wiley-VCH, Weinheim, Germany.
12. Cabrera, P. V., Amano, M., Mitoma, J., Chan, J., Said, J., Fukuda, M., Baum, L. G. (2006) Haploinsufficiency of C2GnT-I glycosyltransferase renders T lymphoma cells resistant to cell death. Blood 108, 2399-2406. <https://doi.org/10.1182/blood-2006-04-018556>
13. Carver, J. P. (1993) Oligosaccharides: how can flexible molecules act as signals? Pure Appl. Chem. 65, 763-770. <https://doi.org/10.1351/pac199365040763>
14. Conover, M. S., Ruer, S., Taganna, J., Kalas, V., De Greve, H., Pinkner, J. S., Dodson, K. W., Remaut, H., Hultgren, S. J. (2016) Inflammation-induced adhesin-receptor interaction provides a fitness advantage to uropathogenic E. coli during chronic infection. Cell Host & Microbe 20, 482-492. <https://doi.org/10.1016/j.chom.2016.08.013>
15. Corfield, A. (2017) Eukaryotic protein glycosylation: a primer for histochemists and cell biologists. Histochem. Cell Biol. 147, 119-147. <https://doi.org/10.1007/s00418-016-1526-4>
16. Corfield, A. P., Berry, M. (2015) Glycan variation and evolution in the eukaryotes. Trends Biochem. Sci. 40, 351-359. <https://doi.org/10.1016/j.tibs.2015.04.004>
17. Dawson, H., André, S., Karamitopoulou, E., Zlobec, I., Gabius, H.-J. (2013) The growing galectin network in colon cancer and clinical relevance of cytoplasmic galectin-3 reactivity. Anticancer Res. 33, 3053-3059.
18. Eichwald, E. (1865) Beiträge zur Chemie der gewebbildenden Substanzen und ihrer Abkömmlinge. I. Ueber das Mucin, besonders der Weinbergschnecke. Ann. Chem. Pharm. 134, 177-211. (in German) <https://doi.org/10.1002/jlac.18651340207>
19. Feng, C., Ghosh, A., Amin, M. N., Giomarelli, B., Shridhar, S., Banerjee, A., Fernandez-Robledo, J. A., Bianchet, M. A., Wang, L. X., Wilson, I. B., Vasta, G. R. (2013) The galectin CvGal1 from the eastern oyster (Crassostrea virginica) binds to blood group A oligosaccharides on the hemocyte surface. J. Biol. Chem. 288, 24394-24409. <https://doi.org/10.1074/jbc.M113.476531>
20. Fischer, E. (1894) Einfluss der Configuration auf die Wirkung der Enzyme. Ber. Dt. Chem. Ges. 27, 2985-2993. (in German) <https://doi.org/10.1002/cber.18940270364>
21. Fujimoto, Z., Tateno, H., Hirabayashi, J. (2014) Lectin structures: classification based on the 3-D structures. Methods Mol. Biol. 1200, 579-606. <https://doi.org/10.1007/978-1-4939-1292-6_46>
22. Gabius, H.-J., Springer, W. R., Barondes, S. H. (1985) Receptor for the cell binding site of discoidin I. Cell 42, 449-456. <https://doi.org/10.1016/0092-8674(85)90102-3>
23. Gabius, H.-J. (1997) Animal lectins. Eur. J. Biochem. 243, 543-576. <https://doi.org/10.1111/j.1432-1033.1997.t01-1-00543.x>
24. Gabius, H.-J., ed. (2009) The Sugar Code. Fundamentals of Glycosciences. Wiley-VCH, Weinheim, Germany.
25. Gabius, H.-J. (2011) The how and why of Ca2+ involvement in lectin activity. Trends Glycosci. Glycotechnol. 23, 168-177. <https://doi.org/10.4052/tigg.23.168>
26. Gabius, H.-J., André, S., Jiménez-Barbero, J., Romero, A., Solís, D. (2011) From lectin structure to functional glycomics: principles of the sugar code. Trends Biochem. Sci. 36, 298-313. <https://doi.org/10.1016/j.tibs.2011.01.005>
27. Gabius, H.-J. (2015) The magic of the sugar code. Trends Biochem. Sci. 40, 341. <https://doi.org/10.1016/j.tibs.2015.04.003>
28. Gabius, H.-J., Kaltner, H., Kopitz, J., André, S. (2015) The glycobiology of the CD system: a dictionary for translating marker designations into glycan/lectin structure and function. Trends Biochem. Sci. 40, 360-376. <https://doi.org/10.1016/j.tibs.2015.03.013>
29. Gabius, H.-J., Manning, J. C., Kopitz, J., André, S., Kaltner, H. (2016) Sweet complementarity: the functional pairing of glycans with lectins. Cell. Mol. Life Sci. 73, 1989-2016. <https://doi.org/10.1007/s00018-016-2163-8>
30. Gabius, H.-J., Roth, J. (2017) An introduction to the sugar code. Histochem. Cell Biol. 147, 111-117. <https://doi.org/10.1007/s00418-016-1521-9>
31. García Caballero, G., Kaltner, H., Michalak, M., Shilova, N., Yegres, M., André, S., Ludwig, A. K., Manning, J. C., Schmidt, S., Schnölzer, M., Bovin, N. V., Reusch, D., Kopitz, J., Gabius, H.-J. (2016) Chicken GRIFIN: a homodimeric member of the galectin network with canonical properties and a unique expression profile. Biochimie 128-129, 34-47. <https://doi.org/10.1016/j.biochi.2016.06.001>
32. Gasic, G., Gasic, T. (1962) Removal and regeneration of the cell coating in tumour cells. Nature 196, 170. <https://doi.org/10.1038/196170a0>
33. Gitt, M. A., Colnot, C., Poirier, F., Nani, K. J., Barondes, S. H., Leffler, H. (1998) Galectin-4 and galectin-6 are two closely related lectins expressed in mouse gastrointestinal tract. J. Biol. Chem. 273, 2954-2960. <https://doi.org/10.1074/jbc.273.5.2954>
34. Gready, J. N., Zelensky, A. N. (2009) Routes in lectin evolution: case study on the C-type lectin-like domains. In: The Sugar Code. Fundamentals of Glycosciences, ed. Gabius, H.-J., pp. 329-346, Wiley-VCH, Weinheim, Germany.
35. Hardy, B. J. (1997) The glycosidic linkage flexibility and time-scale similarity hypotheses. J. Mol. Struct. 395-396, 187-200. <https://doi.org/10.1016/S0166-1280(96)04866-X>
36. Hart, G. W. (2013) Thematic minireview series on glycobiology and extracellular matrices: glycan functions pervade biology at all levels. J. Biol. Chem. 288, 6903. <https://doi.org/10.1074/jbc.R113.453977>
37. Hennet, T., Cabalzar, J. (2015) Congenital disorders of glycosylation: a concise chart of glycocalyx dysfunction. Trends Biochem. Sci. 40, 377-384. <https://doi.org/10.1016/j.tibs.2015.03.002>
38. Hirabayashi, J., ed. (1997) Recent topics on galectins. Trends Glycosci. Glycotechnol. 9, 1-180.
39. Holgersson, S., Gustafsson, A., Gaunitz, S. (2009) Bacterial and viral lectins. In: The Sugar Code. Fundamentals of Glycosciences, ed. Gabius, H.-J., pp. 279-300, Wiley-VCH, Weinheim, Germany.
40. Hounsell, E. F. (1997) Methods of glycoconjugate analysis. In: Glycosciences: Status and Perspectives, eds. Gabius, H.-J., Gabius, S., pp. 15-29, Chapman & Hall, London - Weinheim.
41. Houzelstein, D., Goncalves, I. R., Orth, A., Bonhomme, F., Netter, P. (2008) Lgals6, a 2-million-year-old gene in mice: a case of positive Darwinian selection and presence/absence polymorphism. Genetics 178, 1533-1545. <https://doi.org/10.1534/genetics.107.082792>
42. Hudgin, R. L., Pricer, W. E. J., Ashwell, G., Stockert, R. J., Morell, A. G. (1974) The isolation and properties of a rabbit liver binding protein specific for asialoglycoproteins. J. Biol. Chem. 249, 5536-5543. <https://doi.org/10.1016/S0021-9258(20)79761-9>
43. Iozzo, R. V., Murdoch, A. D. (1996) Proteoglycans of the extracellular environment: clues from the gene and protein side offer novel perspectives in molecular diversity and function. FASEB J. 10, 598-614. <https://doi.org/10.1096/fasebj.10.5.8621059>
44. Ismail, M. N., Stone, E. L., Panico, M., Lee, S. H., Luu, Y., Ramirez, K., Ho, S. B., Fukuda, M., Marth, J. D., Haslam, S. M., Dell, A. (2011) High-sensitivity O-glycomic analysis of mice deficient in core 2 β1,6-N-acetylglucosaminyltransferases. Glycobiology 21, 82-98. <https://doi.org/10.1093/glycob/cwq134>
45. Kaltner, H., Raschta, A.-S., Manning, J. C., Gabius, H.-J. (2013) Copy-number variation of functional galectin genes: studying animal galectin-7 (p53-induced gene 1 in man) and tandem-repeat-type galectins-4 and -9. Glycobiology 23, 1152-1163. <https://doi.org/10.1093/glycob/cwt052>
46. Kaltner, H., García Caballero, G., Sinowatz, F., Schmidt, S., Manning, J. C., André, S., Gabius, H.-J. (2016) Galectinrelated protein: an integral member of the network of chicken galectins. 2. From expression profiling to its immunocyto- and histochemical localization and application as tool for ligand detection. Biochim. Biophys. Acta 1860, 2298-2312. <https://doi.org/10.1016/j.bbagen.2016.06.002>
47. Kaltner, H., Toegel, S., García Caballero, G., Manning, J. C., Ledeen, R. W., Gabius, H.-J. (2017) Galectins: their network and roles in immunity/tumor growth control. Histochem. Cell Biol. 147, 239-256. <https://doi.org/10.1007/s00418-016-1522-8>
48. Klenk, E. (1942) Über die Ganglioside, eine neue Gruppe von zuckerhaltigen Gehirnlipoiden. Hoppe-Seyler’s Z. Physiol. Chem. 273, 76-86. (in German) <https://doi.org/10.1515/bchm2.1942.273.1-2.76>
49. Kopitz, J., von Reitzenstein, C., André, S., Kaltner, H., Uhl, J., Ehemann, V., Cantz, M., Gabius, H.-J. (2001) Negative regulation of neuroblastoma cell growth by carbohydratedependent surface binding of galectin-1 and functional divergence from galectin-3. J. Biol. Chem. 276, 35917-35923. <https://doi.org/10.1074/jbc.M105135200>
50. Kopitz, J. (2009) Glycolipids. In: The Sugar Code. Fundamentals of Glycosciences, ed. Gabius, H.-J., pp. 177-198, Wiley-VCH, Weinheim, Germany.
51. Kopitz, J. (2017) Lipid glycosylation: a primer for histochemists and cell biologists. Histochem. Cell Biol. 147, 175-198. <https://doi.org/10.1007/s00418-016-1518-4>
52. Kopitz, J., Xiao, Q., Ludwig, A.-K., Romero, A., Michalak, M., Sherman, S. E., Zhou, X., Dazen, C., Vértesy, S., Kaltner, H., Klein, M. L., Gabius, H.-J., Percec, V. (2017) Reaction of a programmable glycan presentation of glycodendrimersomes and cells with engineered human lectins to show the sugar functionality of the cell surface. Angew. Chem. Int. Ed. 56, 14677-14681. <https://doi.org/10.1002/anie.201708237>
53. Krasnova, L., Wong, C.-H. (2016) Understanding the chemistry and biology of glycosylation with glycan synthesis. Annu. Rev. Biochem. 85, 599-630. <https://doi.org/10.1146/annurev-biochem-060614-034420>
54. Krzeminski, M., Singh, T., André, S., Lensch, M., Wu, A. M., Bonvin, A. M. J. J., Gabius, H.-J. (2011) Human galectin-3 (Mac-2 antigen): defining molecular switches of affinity to natural glycoproteins, structural and dynamic aspects of glycan binding by flexible ligand docking and putative regulatory sequences in the proximal promoter region. Biochim. Biophys. Acta 1810, 150-161. <https://doi.org/10.1016/j.bbagen.2010.11.001>
55. Laine, R. A. (1997) The information-storing potential of the sugar code. In: Glycosciences: Status and Perspectives, eds. Gabius, H.-J., Gabius, S., pp. 1-14, Chapman & Hall, London - Weinheim.
56. Ledeen, R. W., Wu, G., André, S., Bleich, D., Huet, G., Kaltner, H., Kopitz, J., Gabius, H.-J. (2012) Beyond glycoproteins as galectin counterreceptors: tumor/effector T cell growth control via ganglioside GM1. Ann. N. Y. Acad. Sci. 1253, 206-221. <https://doi.org/10.1111/j.1749-6632.2012.06479.x>
57. Lee, R. T., Lee, Y. C. (1994) Enhanced biochemical affinities of multivalent neoglycoconjugates. In: Neoglycoconjugates. Preparation and Applications, eds. Lee, Y. C., Lee, R. T., pp. 23-50, Academic Press, San Diego, CA.
58. Lis, H., Sharon, N. (1998) Lectins: carbohydrate-specific proteins that mediate cellular recognition. Chem. Rev. 98, 637-674. <https://doi.org/10.1021/cr940413g>
59. Loris, R. (2002) Principles of structures of animal and plant lectins. Biochim. Biophys. Acta 1572, 198-208. <https://doi.org/10.1016/S0304-4165(02)00309-4>
60. Ludwig, A. K., Vértesy, S., Michalak, M., Manning, J. C., André, S., Kübler, D., Kopitz, J., Kaltner, H., Gabius, H.-J. (2016) Playing modular puzzle with adhesion/growth-regulatory galectins: design and testing of a hybrid to unravel structure-activity relationships. Protein Pept. Lett. 23, 1003-1012. <https://doi.org/10.2174/0929866523666160930123421>
61. Ludwig, A. K., Michalak, M., Shilova, N., André, S., Kaltner, H., Bovin, N. V., Kopitz, J., Gabius, H.-J. (2017) Studying the structural significance of galectin design by playing a modular puzzle: homodimer generation from human tandem- repeat-type (heterodimeric) galectin-8 by domain shuffling. Molecules 22, 1572. <https://doi.org/10.3390/molecules22091572>
62. Maestre-Reyna, M., Diderrich, R., Veelders, M. S., Eulenburg, G., Kalugin, V., Bruckner, S., Keller, P., Rupp, S., Mosch, H. U., Essen, L.O. (2012) Structural basis for promiscuity and specificity during Candida glabrata invasion of host epithelia. Proc. Natl. Acad. Sci. USA 109, 16864-16869. <https://doi.org/10.1073/pnas.1207653109>
63. Manning, J. C., Romero, A., Habermann, F. A., García Caballero, G., Kaltner, H., Gabius, H.-J. (2017a) Lectins: a primer for histochemists and cell biologists. Histochem. Cell Biol. 147, 199-222. <https://doi.org/10.1007/s00418-016-1524-6>
64. Manning, J. C., García Caballero, G., Knospe, C., Kaltner, H., Gabius, H.-J. (2017b) Network analysis of adhesion/ growth-regulatory galectins and their binding sites in adult chicken retina and choroid. J. Anat. 231, 23-37. <https://doi.org/10.1111/joa.12612>
65. Mayer, S., Raulf, M. K., Lepenies, B. (2017) C-type lectins: their network and roles in pathogen recognition and immunity. Histochem. Cell Biol. 147, 223-237. <https://doi.org/10.1007/s00418-016-1523-7>
66. McDonald, A. G., Hayes, J. M., Davey, G. P. (2016) Metabolic flux control in glycosylation. Curr. Opin. Struct. Biol. 40, 97-103. <https://doi.org/10.1016/j.sbi.2016.08.007>
67. Montreuil, J. (1995) The history of glycoprotein research, a personal view. In: Glycoproteins, eds. Montreuil, J., Vliegenthart. J. F. G., Schachter, H., pp. 1-12, Elsevier, Amsterdam, The Netherlands.
68. Moonens, K., Remaut, H. (2017) Evolution and structural dynamics of bacterial glycan binding adhesins. Curr. Opin. Struct. Biol. 44, 48-58. <https://doi.org/10.1016/j.sbi.2016.12.003>
69. Nakagawa, H. (2009) Analytical aspects: analysis of proteinbound glycans. In: The Sugar Code. Fundamentals of Glycosciences, ed. Gabius, H.-J., pp. 71-83, Wiley-VCH, Weinheim, Germany.
70. Neelamegham, S., Mahal, L. K. (2016) Multi-level regulation of cellular glycosylation: from genes to transcript to enzyme to structure. Curr. Opin. Struct. Biol. 40, 145-152. <https://doi.org/10.1016/j.sbi.2016.09.013>
71. Novotny, M. V., Alley, W. R., Jr., Mann, B. F. (2013) Analytical glycobiology at high sensitivity: current approaches and directions. Glycoconj. J. 30, 89-117. <https://doi.org/10.1007/s10719-012-9444-8>
72. Oscarson, S. (2009) The chemist’s way to synthesize glycosides. In: The Sugar Code. Fundamentals of Glycosciences, ed. Gabius, H.-J., pp. 31-51, Wiley-VCH, Weinheim, Germany.
73. Patsos, G., Corfield, A. (2009) O-Glycosylation: structural diversity and function. In: The Sugar Code. Fundamentals of Glycosciences, ed. Gabius, H.-J., pp. 111-137, Wiley-VCH, Weinheim, Germany.
74. Percec, V., Leowanawat, P., Sun, H. J., Kulikov, O., Nusbaum, C. D., Tran, T. M., Bertin, A., Wilson, D. A., Peterca, M., Zhang, S., Kamat, N. P., Vargo, K., Moock, D., Johnston, E. D., Hammer, D. A., Pochan, D. J., Chen, Y., Chabre, Y. M., Shiao, T. C., Bergeron-Brlek, M., André, S., Roy, R., Gabius, H.-J., Heiney, P. A. (2013) Modular synthesis of amphiphilic Janus glycodendrimers and their self-assembly into glycodendrimersomes and other complex architectures with bioactivity to biomedically relevant lectins. J. Am. Chem. Soc. 135, 9055-9077. <https://doi.org/10.1021/ja403323y>
75. Reuter, G., Gabius, H.-J. (1999) Eukaryotic glycosylation: whim of nature or multipurpose tool? Cell. Mol. Life Sci. 55, 368-422. <https://doi.org/10.1007/s000180050298>
76. Roseman, S. (2001) Reflections on glycobiology. J. Biol. Chem. 276, 41527-41542. <https://doi.org/10.1074/jbc.R100053200>
77. Roth, J. (1978) The lectins: molecular probes in cell biology and membrane research. Exp. Pathol. 3 (Suppl. 1), 1-186.
78. Roth, J. (2002) Protein N-glycosylation along the secretory pathway: relationship to organelle topography and function, protein quality control, and cell interactions. Chem. Rev. 102, 285-303. <https://doi.org/10.1021/cr000423j>
79. Roth, J. (2011) Lectins for histochemical demonstration of glycans. Histochem. Cell Biol. 136, 117-130. <https://doi.org/10.1007/s00418-011-0848-5>
80. Roth, J., Zuber, C. (2017) Quality control of glycoprotein folding and ERAD: the role of N-glycan handling, EDEM1 and OS-9. Histochem. Cell Biol. 147, 269-284. <https://doi.org/10.1007/s00418-016-1513-9>
81. Roy, R., Murphy, P. V., Gabius, H.-J. (2016) Multivalent carbohydrate- lectin interactions: how synthetic chemistry enables insights into nanometric recognition. Molecules 21, 629. <https://doi.org/10.3390/molecules21050629>
82. Roy, R., Cao, Y., Kaltner, H., Kottari, N., Shiao, T. C., Belkhadem, K., André, S., Manning, J. C., Murphy, P. V., Gabius, H.-J. (2017) Teaming up synthetic chemistry and histochemistry for activity screening in galectin-directed inhibitor design. Histochem. Cell Biol. 147, 285-301. <https://doi.org/10.1007/s00418-016-1525-5>
83. Rüdiger, H., Gabius, H.-J. (2009) The biochemical basis and coding capacity of the sugar code. In: The Sugar Code. Fundamentals of Glycosciences, ed. Gabius, H.-J., pp. 3-13, Wiley-VCH, Weinheim, Germany.
84. Schengrund, C.-L. (2015) Gangliosides: glycosphingolipids essential for normal neural development and function. Trends Biochem. Sci. 40, 397-406. <https://doi.org/10.1016/j.tibs.2015.03.007>
85. Sharon, N. (1975) Complex Carbohydrates. Their Chemistry, Biosynthesis, and Functions. Addison-Wesley Publ. Co., Reading, MA.
86. Smetana, K., Jr., André, S., Kaltner, H., Kopitz, J., Gabius, H.-J. (2013) Context-dependent multifunctionality of galectin- 1: a challenge for defining the lectin as therapeutic target. Expert Opin. Ther. Targets 17, 379-392. <https://doi.org/10.1517/14728222.2013.750651>
87. Solís, D., Bovin, N. V., Davis, A. P., Jiménez-Barbero, J., Romero, A., Roy, R., Smetana, K., Jr., Gabius, H.-J. (2015) A guide into glycosciences: how chemistry, biochemistry and biology cooperate to crack the sugar code. Biochim. Biophys. Acta 1850, 186-235. <https://doi.org/10.1016/j.bbagen.2014.03.016>
88. Spiro, R. G. (2002) Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology 12, 43R-56R. <https://doi.org/10.1093/glycob/12.4.43R>
89. Ströh, L. J., Stehle, T. (2014) Glycan engagement by viruses: receptor switches and specificity. Annu. Rev. Virol. 1, 285-306. <https://doi.org/10.1146/annurev-virology-031413-085417>
90. Takamatsu, S., Antonopoulos, A., Ohtsubo, K., Ditto, D., Chiba, Y., Le, D. T., Morris, H. R., Haslam, S. M., Dell, A., Marth, J. D., Taniguchi, N. (2010) Physiological and glycomic characterization of N-acetylglucosaminyltransferase- IVa and -IVb double deficient mice. Glycobiology 20, 485-497. <https://doi.org/10.1093/glycob/cwp200>
91. Tan, F. Y., Tang, C. M., Exley, R. M. (2015) Sugar coating: bacterial protein glycosylation and host-microbe interactions. Trends Biochem. Sci. 40, 342-350. <https://doi.org/10.1016/j.tibs.2015.03.016>
92. Tasumi, S., Vasta, G. R. (2007) A galectin of unique domain organization from hemocytes of the Eastern oyster (Crassostrea virginica) is a receptor for the protistan parasite Perkinsus marinus. J. Immunol. 179, 3086-3098. <https://doi.org/10.4049/jimmunol.179.5.3086>
93. Thudichum, J. L. W. (1874) Researches on the chemical constitution of the brain. In: Report of the Medical Offices of the Privy Council and Local Government Board, London, UK.
94. Toegel, S., Weinmann, D., André, S., Walzer, S. M., Bilban, M., Schmidt, S., Chiari, C., Windhager, R., Krall, C., Bennani- Baiti, I. M., Gabius, H.-J. (2016) Galectin-1 couples glycobiology to inflammation in osteoarthritis through the activation of an NF-κB-regulated gene network. J. Immunol. 196, 1910-1921. <https://doi.org/10.4049/jimmunol.1501165>
95. von der Lieth, C.-W., Siebert, H.-C., Kozár, T., Burchert, M., Frank, M., Gilleron, M., Kaltner, H., Kayser, G., Tajkhorshid, E., Bovin, N. V., Vliegenthart, J. F. G., Gabius, H.-J. (1998) Lectin ligands: new insights into their conformations and their dynamic behavior and the discovery of conformer selection by lectins. Acta Anat. 161, 91-109. <https://doi.org/10.1159/000046452>
96. Wang, J., Lu, Z. H., Gabius, H.-J., Rohowsky-Kochan, C., Ledeen, R. W., Wu, G. (2009) Cross-linking of GM1 ganglioside by galectin-1 mediates regulatory T cell activity involving TRPC5 channel activation: possible role in suppressing experimental autoimmune encephalomyelitis. J. Immunol. 182, 4036-4045. <https://doi.org/10.4049/jimmunol.0802981>
97. Watkins, W. M. (1999) A half century of blood-group antigen research: some personal recollections. Trends Glycosci. Glycotechnol. 11, 391-411. <https://doi.org/10.4052/tigg.11.391>
98. Weinmann, D., Schlangen, K., André, S., Schmidt, S., Walzer, S. M., Kubista, B., Windhager, R., Toegel, S., Gabius, H.-J. (2016) Galectin-3 induces a pro-degradative/inflammatory gene signature in human chondrocytes, teaming up with galectin-1 in osteoarthritis pathogenesis. Sci. Rep. 6, 39112. <https://doi.org/10.1038/srep39112>
99. Wilson, I. B. H., Paschinger, H., Rendic, D. (2009) Glycosylation of model and ‘lower’ organisms. In: The Sugar Code. Fundamentals of Glycosciences, ed. Gabius, H.-J., pp. 139- 154, Wiley-VCH, Weinheim, Germany.
100. Winterburn, P. J., Phelps, C. F. (1972) The significance of glycosylated proteins. Nature 236, 147-151. <https://doi.org/10.1038/236147a0>
101. Xiao, Q., Wang, Z., Williams, D., Leowanawat, P., Peterca, M., Sherman, S. E., Zhang, S., Hammer, D. A., Heiney, P. A., King, S. R., Markovitz, D. M., André, S., Gabius, H.-J., Klein, M. L., Percec, V. (2016) Why do membranes of some unhealthy cells adopt a cubic architecture? ACS Cent. Sci. 2, 943-953. <https://doi.org/10.1021/acscentsci.6b00284>
102. Zhang, S., Xiao, Q., Sherman, S. E., Muncan, A., Ramos Vicente, A. D., Wang, Z., Hammer, D. A., Williams, D., Chen, Y., Pochan, D. J., Vértesy, S., André, S., Klein, M. L., Gabius, H.-J., Percec, V. (2015a) Glycodendrimersomes from sequence-defined Janus glycodendrimers reveal high activity and sensor capacity for the agglutination by natural variants of human lectins. J. Am. Chem. Soc. 137, 13334-13344. <https://doi.org/10.1021/jacs.5b08844>
103. Zhang, S., Moussodia, R.-O., Murzeau, C., Sun, H. J., Klein, M. L., Vértesy, S., André, S., Roy, R., Gabius, H.-J., Percec, V. (2015b) Dissecting molecular aspects of cell interactions using glycodendrimersomes with programmable glycan presentation and engineered human lectins. Angew. Chem. Int. Ed. Engl. 54, 4036-4040. <https://doi.org/10.1002/anie.201410882>
104. Zivicová, V., Broz, P., Fík, Z., Mifková, A., Plzák, J., Cada, Z., Kaltner, H., Kucerová, J. F., Gabius, H.-J., Smetana, K., Jr. (2017) Genome-wide expression profiling (with focus on the galectin network) in tumor, transition zone and normal tissue of head and neck cancer: marked differences between individual patients and the site of specimen origin. Anticancer Res. 37, 2275-2288. <https://doi.org/10.21873/anticanres.11565>
105. Zuber, C., Roth, J. (2009) N-Glycosylation. In: The Sugar Code. Fundamentals of Glycosciences, ed. Gabius, H.-J., pp. 87-110, Wiley-VCH, Weinheim, Germany.
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Submissions

Archive