Fol. Biol. 2017, 63, 155-163
https://doi.org/10.14712/fb2017063040155
Oridonin Induces Apoptosis in Human Nasopharyngeal Carcinoma Cells Involving ROS Generation
References
1. 2014) Targeting apoptosis pathways for new cancer therapeutics. Annu. Rev. Med. 65, 139-155.
< , L., Wang, S. (https://doi.org/10.1146/annurev-med-010713-141310>
2. 2000) TRAIL receptor-2 signals apoptosis through FADD and caspase-8. Nat. Cell Biol. 2, 241-243.
< , J. L., Holler, N., Reynard, S., Vinciguerra, P., Schneider, P., Juo, P., Blenis, J., Tschopp, J. (https://doi.org/10.1038/35008667>
3. 2016) AMP-activated protein kinase couples 3-bromopyruvate- induced energy depletion to apoptosis via activation of FoxO3a and upregulation of proapoptotic Bcl-2 proteins. Mol. Carcinog. 55, 1584-1597.
< , C., Karakas, B., Timucin, A. C., Tezil, T., Basaga, H. (https://doi.org/10.1002/mc.22411>
4. 1997) The importance of oxidative stress in apoptosis. Br. Med. Bull. 53, 662-668.
< , S. (https://doi.org/10.1093/oxfordjournals.bmb.a011637>
5. 2014) Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat. Rev. Mol. Cell Biol. 15, 49-63.
< , P. E., Lessene, G., Strasser, A., Adams, J. M. (https://doi.org/10.1038/nrm3722>
6. 2012) Biomarkers of cell death applicable to early clinical trials. Exp. Cell Res. 318, 1252-1259.
< , E., Greystoke, A., Ranson, M., Dive, C. (https://doi.org/10.1016/j.yexcr.2012.03.020>
7. 2016) Effects of G6PD activity inhibition on the viability, ROS generation and mechanical properties of cervical cancer cells. Biochim. Biophys. Acta 1863, 2245-2254.
< , Z., Jiang, C., Feng, Y., Chen, R., Lin, X., Zhang, Z., Han, L., Chen, X., Li, H., Guo, Y., Jiang, W. (https://doi.org/10.1016/j.bbamcr.2016.05.016>
8. 2007) Therapeutic targets in the mitochondrial apoptotic pathway. Expert Opin. Ther. Targets 11, 515-526.
< , G., Paschen, S. A. (https://doi.org/10.1517/14728222.11.4.515>
9. 2000) The biochemistry of apoptosis. Nature 407, 770-776.
< , M. O. (https://doi.org/10.1038/35037710>
10. 2011) Global cancer statistics. CA Cancer J. Clin. 61, 69-90.
< , A., Bray, F., Center, M. M., Ferlay, J., Ward, E., Forman, D. (https://doi.org/10.3322/caac.20107>
11. 1997) Granulosa cell apoptosis, aromatase activity, cyclic adenosine 3’,5’-monophosphate response to gonadotropins, and follicular fluid steroid levels during spontaneous and induced follicular atresia in ewes. Biol. Reprod. 56, 830-836.
< , P. D., Tisdall, D. J., De’ath, G., Heath, D. A., Lun, S., Hudson, N. L., McNatty, K. P. (https://doi.org/10.1095/biolreprod56.4.830>
12. 2007) Mitochondria: a hub of redox activities and cellular distress control. Mol. Cell. Biochem. 305, 235-253.
< , P., Singh, B. K. (https://doi.org/10.1007/s11010-007-9520-8>
13. 2011) Modern natural products drug discovery and its relevance to biodiversity conservation. J. Nat. Prod. 74, 496-511.
< , D. G. (https://doi.org/10.1021/np100550t>
14. 2011) Oridonin: an active diterpenoid targeting cell cycle arrest, apoptotic and autophagic pathways for cancer therapeutics. Int. J. Biochem. Cell Biol. 43, 701-704.
< , C. Y., Wang, E. Q., Cheng, Y., Bao, J. K. (https://doi.org/10.1016/j.biocel.2011.01.020>
15. 2016) Oridonin, a promising ent-kaurane diterpenoid lead compound. Int. J. Mol. Sci. 17, pii: E1395.
< , D., Han, T., Liao, J., Hu, X., Xu, S., Tian, K., Gu, X., Cheng, K., Li, Z., Hua, H., Xu, J. (https://doi.org/10.3390/ijms17091395>
16. 2015) Oridonin phosphate-induced autophagy effectively enhances cell apoptosis of human breast cancer cells. Med. Oncol. 32, 365.
< , Y., Wang, Y., Wang, S., Gao, Y., Zhang, X., Lu, C. (https://doi.org/10.1007/s12032-014-0365-1>
17. 2010) Impaired dephosphorylation renders G6PDknockdown HepG2 cells more susceptible to H2O2-induced apoptosis. Free Radic. Biol. Med. 49, 361-373.
< , C. J., Ho, H. Y., Cheng, M. L., You, T. H., Yu, J. S., Chiu, D. T. (https://doi.org/10.1016/j.freeradbiomed.2010.04.019>
18. 1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86, 147-157.
< , X., Kim, C. N., Yang, J., Jemmerson, R., Wang, X. (https://doi.org/10.1016/S0092-8674(00)80085-9>
19. 2012) Oridonin: targeting programmed cell death pathways as an anti-tumour agent. Cell Prolif. 45, 499-507.
< , Z., Ouyang, L., Peng, H., Zhang, W. Z. (https://doi.org/10.1111/j.1365-2184.2012.00849.x>
20. 2011) Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev. Cell 21, 92-101.
< , J. C., Youle, R. J. (https://doi.org/10.1016/j.devcel.2011.06.017>
21. 2012) Oxidative stress in apoptosis and cancer: an update. Arch. Toxicol. 86, 1649-1665.
< , J. M., Segura, J. A., Alonso, F. J., Marquez, J. (https://doi.org/10.1007/s00204-012-0906-3>
22. 2012) Natural products: promising resources for cancer drug discovery. Anticancer Agents Med. Chem. 12, 49-75.
< , S., Bandyopadhyay, S., Ghosh, M. K., Mukhopadhyay, S., Roy, S., Mandal, C. (https://doi.org/10.2174/187152012798764697>
23. 2003) Specificity of a third kind: reactive oxygen and nitrogen intermediates in cell signaling. J. Clin. Invest. 111, 769-778.
< , C. (https://doi.org/10.1172/JCI200318174>
24. 2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod. 75, 311-335.
< , D. J., Cragg, G. M. (https://doi.org/10.1021/np200906s>
25. 2003) A multi-functional organelle mitochondrion is involved in cell death, proliferation and disease. Curr. Med. Chem. 10, 2485-2494.
< , S. (https://doi.org/10.2174/0929867033456440>
26. 2011) Role of Bcl-2 family proteins and caspases in the regulation of apoptosis. Mol. Cell. Biochem. 351, 41-58.
< , M. S., Nawaz, M., Ahsan, H. (https://doi.org/10.1007/s11010-010-0709-x>
27. 2012) Oridonin nanosuspension was more effective than free oridonin on G2/M cell cycle arrest and apoptosis in the human pancreatic cancer PANC-1 cell line. Int. J. Nanomedicine 7, 1793-1804.
, X., Zhang, D., Xu, X., Feng, F., Ren, G., Chu, Q., Zhang, Q., Tian, K. (
28. 2007) The role of mitochondria in pharmacotoxicology: a reevaluation of an old, newly emerging topic. Am. J. Physiol. Cell Physiol. 293, C12-21.
< , R., Bottoni, P., Botta, G., Martorana, G. E., Giardina, B. (https://doi.org/10.1152/ajpcell.00314.2006>
29. 2016) Oridonin, a novel lysine acetyltransferases inhibitor, inhibits proliferation and induces apoptosis in gastric cancer cells through p53- and caspase-3-mediated mechanisms. Oncotarget 7, 22623-22631.
< , M., Lu, X. J., Zhang, J., Diao, H., Li, G., Xu, L., Wang, T., Wei, J., Meng, W., Ma, J. L., Yu, H., Wang, Y. G. (https://doi.org/10.18632/oncotarget.8033>
30. 2008) Redox regulation of cell survival. Antioxid. Redox Signal. 10, 1343-1374.
< , D., Lu, W., Ogasawara, M. A., Nilsa, R. D., Huang, P. (https://doi.org/10.1089/ars.2007.1957>
31. 2014) The rheostat in the membrane: BCL-2 family proteins and apoptosis. Cell Death Differ. 21, 206-215.
< , N., Marassi, F. M., Newmeyer, D. D., Hanein, D. (https://doi.org/10.1038/cdd.2013.153>
32. 2013) Oridonin induces apoptosis, inhibits migration and invasion on highly-metastatic human breast cancer cells. Am. J. Chin. Med. 41, 177-196.
< , S., Zhong, Z., Wan, J., Tan, W., Wu, G., Chen, M., Wang, Y. (https://doi.org/10.1142/S0192415X13500134>
33. 2016) Reactive oxygen species mediate oridonin-induced apoptosis through DNA damage response and activation of JNK pathway in diffuse large B cell lymphoma. Leuk. Lymphoma 57, 888-898.
< , Z. Z., Fu, W. B., Jin, Z., Guo, P., Wang, W. F., Li, J. M. (https://doi.org/10.3109/10428194.2015.1061127>
34. 2015) Redox signaling: Potential arbitrator of autophagy and apoptosis in therapeutic response. Free Radic. Biol. Med. 89, 452-465.
< , L., Wang, K., Lei, Y., Li, Q., Nice, E. C., Huang, C. (https://doi.org/10.1016/j.freeradbiomed.2015.08.030>
35. 2014) Oridonin, a promising antitumor natural product in the chemotherapy of hematological malignancies. Curr. Pharm. Biotechnol. 15, 1083-1092.
< , Z., Chen, Y. (https://doi.org/10.2174/1389201015666141111115608>