Fol. Biol. 2017, 63, 190-196
https://doi.org/10.14712/fb2017063050190
Matrix Metalloproteinase-2 and -9, Lactate, and Malate Dehydrogenase and Lipid Peroxides in Sera of Patients with Colorectal Carcinoma
References
1. 2005) Proteomic approaches in colon cancer: promising tools for new cancer markers and drug target discovery. Clin. Colorectal Cancer 4, 396-402.
< , R., Belluco, C., Kohn, E. C. (https://doi.org/10.3816/CCC.2005.n.012>
2. 2006) Proteomic analysis of colorectal cancer reveals alterations in metabolic pathways: mechanism of tumorigenesis. Mol. Cell. Proteomics 5, 1119-1130.
< , X., Lin, Q., Foo, T. W., Joshi, S., You, T., Shen, H. M., Ong, C. N., Cheah, P. Y., Eu, K. W., Hew, C. L. (https://doi.org/10.1074/mcp.M500432-MCP200>
3. 1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254.
< , M. M. (https://doi.org/10.1016/0003-2697(76)90527-3>
4. 1977) Optimal conditions for assaying human lactate dehydrogenase by the lactate-to-pyruvate reaction: Arrhenius relationships for lactate dehydrogenase isoenzymes 1 and 5. Clin. Chem. 23, 1289-1295.
< , S. N., Jackson, K. Y., Lubinski, R., Vanderlinde, R. E. (https://doi.org/10.1093/clinchem/23.7.1289>
5. 2007) Matrix metalloproteinase-9 activity is associated with poor prognosis in T3-T4 node-negative colorectal cancer. Hum. Pathol. 38, 1603-1610.
< , Y. B., Lee, W. Y., Song, S. Y., Shin, H. J., Yun, S. H., Chun, H. K. (https://doi.org/10.1016/j.humpath.2007.03.018>
6. 2011) Cancer associated fibroblasts: the dark side of the coin. Am. J. Cancer. Res. 1, 482-497.
, P., Chiarugi, P. (
7. 2009) Hormone-dependent and hormone- independent control of metabolic and developmental functions of malate dehydrogenase – review. Endocr. Regul. 43, 39-52.
< , P., Farkas, R. (https://doi.org/10.4149/endo_2009_01_39>
8. 1999) Early detection and prevention of colorectal cancer. Oncol. Rep. 6, 277-281.
, R. H. (
9. 2011) Lactate shuttles at a glance: from physiological paradigms to anti-cancer treatments. Dis. Model. Mech. 4, 727-732.
< , N., Feron, O. (https://doi.org/10.1242/dmm.007724>
10. 1975) Kinetic studies on pig heart cytoplasmic malate dehydrogenase. J. Biol. Chem. 250, 2106-2113.
< , C. J., Fernandez, S. (https://doi.org/10.1016/S0021-9258(19)41689-X>
11. 2013) Activity of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase in different stages of colorectal carcinoma. Dig. Dis. Sci. 58, 2646-2652.
< , K., Rovčanin, B., Tatić, S., Krivokapić, Z., Gajić, M., Dragutinović, V. (https://doi.org/10.1007/s10620-013-2681-2>
12. 2007) Alterations of glutathione Stransferase and matrix metalloproteinase-9 expression are early events in esophageal carcinogenesis. World J. Gastroenterol. 13, 676-682.
< , L., Hritz, I., Pregun, I., Sipos, F., Juhasz, M., Molnar, B., Tulassay, Z. (https://doi.org/10.3748/wjg.v13.i5.676>
13. 2001) Role of matrix metalloproteinases in colorectal carcinogenesis. Ann. Surg. 233, 786-792.
< , M. J., Yan, J., Johnson, M. R., Weiss, H., Diasio, R. B., Urist, M. M. (https://doi.org/10.1097/00000658-200106000-00008>
14. 2011) Matrix metalloproteinase-2 and -7 expression in colorectal cancer. J. Korean Soc. Coloproctol. 27, 133-139.
< , S. W., Kang, Y. K., Lee, B., Lee, W. Y., Janng, Y. G., Paik, I. W., Lee, H. (https://doi.org/10.3393/jksc.2011.27.3.133>
15. 2003) Determining the levels of matrix metalloproteinase-9 in portal and peripheral blood is useful for predicting liver metastasis of colorectal cancer. Jpn. J. Clin. Oncol. 33, 186-191.
< , H., Murata, N., Tada, M., Okada, N., Hashimoto, D., Kubota, S., Shirakawa, K., Wakasugi, H. (https://doi.org/10.1093/jjco/hyg035>
16. 2012) Oxidative stress in inflammation-based gastrointestinal tract diseases: challenges and opportunities. J. Gastroenterol. Hepatol. 27, 1004-1010.
< , Y. J., Kim, E. H., Hahm, K. B. (https://doi.org/10.1111/j.1440-1746.2012.07108.x>
17. 2007) Keeping out the bad guys: gateway to cellular target therapy. Cancer Res. 67, 10099-10102.
< , T., Taketo, M. M. (https://doi.org/10.1158/0008-5472.CAN-07-2100>
18. 2012) Upregulation of IL-6, IL-8 and CXCL-1 production in dermal fibroblasts by normal/malignant epithelial cells in vitro: immunohistochemical and transcriptomic analyses. Biol. Cell 104, 738-751.
< , M., Szabo, P., Dvořánková, B., Lacina, L., Gabius, H. J., Strnad, H., Sáchová, J., Vlček, C., Plzák, J., Chovanec, M., Cada, Z., Betka, J., Fík, Z., Pačes, J., Kovářová, H., Motlík, J., Jarkovská, K., Smetana, K. Jr. (https://doi.org/10.1111/boc.201200018>
19. 2004) Zymographic detection and clinical correlations of MMP-2 and MMP-9 in breast cancer sera. Br. J. Cancer 90, 1414-1421.
< , G., Pucci-Minafra, I., Marrazzo, A., Taormina, P., Minafra, S. (https://doi.org/10.1038/sj.bjc.6601725>
20. 2008) MMP-2 genophenotype is prognostic for colorectal cancer survival, whereas MMP-9 is not. Br. J. Cancer 98, 1820-1823.
< , A. M., Sier, C. F., Hawinkels, L. J., Kubben, F. J., van Duijn, W., van der Reijden, J. J.,Lamers, C. B., Hommes, D. W., Verspaget, H. W. (https://doi.org/10.1038/sj.bjc.6604380>
21. 2006) Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc. Res. 69, 562-573.
< , H., Visse, R., Murphy, G. (https://doi.org/10.1016/j.cardiores.2005.12.002>
22. 2007) Enhanced oxidative stress and leucocyte activation in neoplastic tissues of the colon. Dig. Dis. Sci. 52, 526-530.
< , T., Maor, I., Lanir, A., Shnizer, S., Lavy, A. (https://doi.org/10.1007/s10620-006-9177-2>
23. 2004) Sequential proteome alterations during genesis and progression of colon cancer. Cell. Mol. Life Sci. 61, 1246-1255.
, U. J., Hirschberg, D., Habermann, J. K., Palmberg, C., Becker, S., Krüger, S., Gustafsson, M., Bruch, H. P., Franzen, B., Ried, T., Bergmann, T., Auer, G., Jornvall, H. (
24. 2009) Matrix metalloproteinases as novel biomarkers and potential therapeutic targets in human cancer. J. Clin. Oncol. 27, 5287-5297.
< , R., Yang, J., Moses, M. A. (https://doi.org/10.1200/JCO.2009.23.5556>
25. 2014) The role of matrix metalloproteinases in colorectal cancer. Cancers (Basel) 6, 366-375.
< , A. H., Raufman, J. P., Xie, G. (https://doi.org/10.3390/cancers6010366>
26. 2010) Prevention of tertiary butyl hydroperoxide induced oxidative impairment and cell death by a novel antioxidant protein molecule isolated from the herb, Phyllanthus niruri. Toxicol. In Vitro 24, 1711-1719.
< , M. K., Sil, P. C. (https://doi.org/10.1016/j.tiv.2010.05.014>
27. 2005) Lipid peroxidation and peroxidant and oxidant status in colorectal cancer. World J. Gastroenterol. 11, 403-406.
< , E., Sulkowski, S., Koda, M., Zalewski, B., Kanczuga-Koda, I., Sulkowska, M. (https://doi.org/10.3748/wjg.v11.i3.403>
28. 2005) Gelatinases (MMP-2 and -9) and their natural inhibitors as prognostic indicators in solid cancers. Biochimie 87, 287-297.
< , T. (https://doi.org/10.1016/j.biochi.2005.01.014>
29. 2003) Use of plasma MMP-2 and MMP-9 levels as a surrogate for tumor expression in colorectal cancer patients. Int. J. Cancer 107, 541-550.
< , M. G., George, M. L., Eccles, S. A., Burton, S., Swift, R. I., Abulafi, A. M. (https://doi.org/10.1002/ijc.11436>
30. 1990) Effects of calmodulin antagonists on radiation-induced lipid peroxidation in microsomes. Int. J. Radiat. Biol. 58, 733-743.
< , R., Kale, R. K. (https://doi.org/10.1080/09553009014552121>
31. 2016) The relationship between telomerase activity and clinicopathological parameters in colorectal cancer: a meta- analysis. Balkan Med. J. 33, 64-71.
< , X. C., Ge, L. Y., Lai, H., Qiu, H., Tang, F., Qin, Y. Z. (https://doi.org/10.5152/balkanmedj.2015.151182>