Fol. Biol. 2017, 63, 209-216

https://doi.org/10.14712/fb2017063050209

Expression of Matrix Metalloproteinases and Endogenous Inhibitors in Abdominal Aortic Aneurysm and Aortoiliac Occlusive Disease (Syndrome Leriche)

N. Vasic1, S. Glumac2, Snežana Pejić3, L. J. Amidzic4,5, L. J. Tadic Latinovic4, B. Dozic6, S. Hinic7, Z. Maksimovic8

1Department of Vascular Surgery, University Clinical Centre of the Republic of Srpska, Banja Luka, Bosnia and Herzegovina
2Institute of Pathology, School of Medicine, University of Belgrade, Belgrade, Serbia
3Laboratory for Molecular Biology and Endocrinology, “Vinca” Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
4Department of Clinical Pathology, University Clinical Centre of the Republic of Srpska, Banja Luka, Bosnia and Herzegovina
5Department of Human Genetics; University Clinical Centre of the Republic of Srpska, Banja Luka, Bosnia and Herzegovina
6Institute of Pathology, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
7Department of Cardiology, University Clinical Hospital Centre “Bezanijska kosa”, University of Belgrade, Belgrade, Serbia
8Clinic for Vascular and Endovascular Surgery, Serbian Clinical Centre; University of Belgrade, Belgrade, Serbia

Received May 2017
Accepted February 2018

References

1. Abraha, I., Romagnoli, C., Montedori, A., Cirocchi R. (2016) Thoracic stent graft versus surgery for thoracic aneurysm. Cochrane Database Syst. Rev. 6, CD006796.
2. Ailawadi, G., Moehle, C. W., Pei, H., Walton, S. P., Yang, Z., Kron, I. L., Lau, C. L., Owens, G. K. (2009) Smooth muscle phenotypic modulation is an early event in aortic aneurysms. J. Thorac. Cardiovasc. Surg. 138, 1392-1399. <https://doi.org/10.1016/j.jtcvs.2009.07.075>
3. Azevedo, A., Prado, A. F., Antonio, R. C, Issa, J. P., Gerlach, R. F. (2014) Matrix metalloproteinases are involved in cardiovascular diseases. Basic Clin. Pharmacol. Toxicol. 115, 301-314. <https://doi.org/10.1111/bcpt.12282>
4. Aziz, F., Kuivaniemi, H. (2007) Role of matrix metalloproteinase inhibitors in preventing abdominal aortic aneurysm. Ann. Vasc. Surg. 21, 392-401. <https://doi.org/10.1016/j.avsg.2006.11.001>
5. Beamish, J. A., He, P., Kottke-Marchant, K., Marchant, R. E. (2010) Molecular regulation of contractile smooth muscle cell phenotype: implications for vascular tissue engineering. Tissue Eng. Part B. Rev. 16, 467-491. <https://doi.org/10.1089/ten.teb.2009.0630>
6. Chase, A. J., Newby, A. C. (2003) Regulation of matrix metalloproteinase (matrixin) genes in blood vessels: a multi-step recruitment model for pathological remodeling J. Vasc. Res. 40, 329-343. <https://doi.org/10.1159/000072697>
7. Chung, A. W., Rauniyar, P., Luo, H., Hsiang, Y. N., Van Breemen, C., Okon, E. B. (2005) Pressure distention compared with pharmacologic relaxation in vein grafting upregulates matrix metalloproteinase-2 and -9. J. Vasc. Surg. 42, 747-756. <https://doi.org/10.1016/j.jvs.2005.05.037>
8. Clair, D. G., Beach, J. M. (2015) Strategies for managing aortoiliac occlusions: access, treatment and outcomes. Expert Rev. Cardiovasc. Ther. 13, 551-563. <https://doi.org/10.1586/14779072.2015.1036741>
9. Crowther, M., Goodall, S., Jones, J. L., Bell, P. R. F., Thompson, M. M. (2000) Increased matrix metalloproteinase 2 expression in vascular smooth muscle cells cultured from abdominal aortic aneurysms J. Vasc. Surg. 32, 575-583. <https://doi.org/10.1067/mva.2000.108010>
10. Defawe, O. D., Colige A., Lambert, C. A., Munaut, C., Delvenne, P., Lapiere, C. M., Limet, R., Nusgens, B. V., Sakalihasan, N. (2003) TIMP-2 and PAI-1 mRNA levels are lower in aneurysmal as compared to athero-occlusive abdominal aortas. Cardiovasc. Res. 60, 205-213. <https://doi.org/10.1016/S0008-6363(03)00513-3>
11. Freestone, T., Turner, R. J, Coady, A., Higman, D. J., Greenhalgh, R. M., Powell, J. T. (1995) Inflammation and matrix metalloproteinases in the enlarging abdominal aortic aneurysm. Arterioscler. Thromb. Vasc. Biol. 15, 1145-1151. <https://doi.org/10.1161/01.ATV.15.8.1145>
12. Galis, Z. S., Khatri, J. J. (2002) Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly. Circ. Res. 90, 251-262. <https://doi.org/10.1161/res.90.3.251>
13. Gerhard-Herman M. D., Gornik, H. L., Barrett, C., Barshes, N. R., Corriere, M. A., Drachman, D. E., Fleisher, L. A., Fowkes, F. G. R., Hamburg, N. M., Kinlay, S., Lookstein, R., Misra, S., Mureebe, L., Olin, J. W., Patel, R. A. G., Regensteiner, J. G., Schanzer, A., Shishehbor, M. H., Stewart, K. J., Treat-Jacobson, D., Walsh, M. E. (2016) AHA/ ACC Guideline on the management of patients with lower extremity peripheral artery disease: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 69, 1465-1508.
14. Golledge, J., Norman, P. (2010) Atherosclerosis and abdominal aortic aneurysm: cause, response or common risk factors? Arterioscler. Thromb. Vasc. Biol. 30, 1075-1077. <https://doi.org/10.1161/ATVBAHA.110.206573>
15. Gurjar, M. V., Deleon, J., Sharma, R. V., Bhalla, R. C. (2001) Role of reactive oxygen species in IL-1 β-stimulated sustained ERK activation and MMP-9 induction. Am. J. Physiol. Heart Circ. Physiol. 281, H2568-H2574. <https://doi.org/10.1152/ajpheart.2001.281.6.H2568>
16. Johnson, J. L., Van Eys, G. J., Angelini, G. D, George, S. J. (2001) Injury induces dedifferentiation of smooth muscle cells and increased matrix-degrading metalloproteinase activity in human saphenous vein. Arterioscler. Thromb. Vasc. Biol. 21, 1146-1151. <https://doi.org/10.1161/hq0701.092106>
17. Keeling, W. B., Armstrong, P. A., Stone, P. A., Bandyk, D. F., Shames, M. L. (2005) An overview of matrix metalloproteinases in the pathogenesis and treatment of abdominal aortic aneurysms. Vasc. Endovascular Surg. 39, 457-464. <https://doi.org/10.1177/153857440503900601>
18. Keisler, B., Carter, C. (2015) Abdominal aortic aneurysm. Am. Fam. Physician 91, 538-543.
19. LeMaire, S. A., Wang, X., Wilks, J. A., Carter, S. A., Wen, S., Won, T., Leonardelli, D., Anand, G., Conklin, L. D., Wang, X.L., Thompson, R. W., Coselli, J. S. (2005) Matrix metalloproteinases in ascending aortic aneurysms: bicuspid versus trileaflet aortic valves. J. Surg. Res. 123, 40-48. <https://doi.org/10.1016/j.jss.2004.06.007>
20. Leriche, R., Morel, A. (1943) The syndrome of thrombotic obliteration of the aortic bifurcation. Ann. Surg. 127, 193-206. <https://doi.org/10.1097/00000658-194802000-00001>
21. Lesauskaite, V., Epistolato, M. C., Castagnini, M., Urbonavicius, S., Tanganelli, P. (2006) Expression of matrix metalloproteinases, their tissue inhibitors and osteopontin in the wall of thoracic and abdominal aortas with dilatative pathology. Hum. Pathol. 27, 1076-1084. <https://doi.org/10.1016/j.humpath.2006.03.017>
22. Liapis, C. D., Paraskevas, K. I. (2003) The pivotal role of matrix metalloproteinases in the development of human abdominal aortic aneurysms. Vasc. Med. 8, 267-271. <https://doi.org/10.1191/1358863x03vm504ra>
23. Longo, G. M, Xiong, W., Greiner, T. C., Zhao, Y., Fiotti, N., Baxter, B. T. (2002) Matrix metalloproteinases 2 and 9 work in concert to produce aortic aneurysms. J. Clin. Invest. 110, 625-632. <https://doi.org/10.1172/JCI0215334>
24. McMillan, W. D., Patterson, B. K., Keen, R. R., Pearce, W. H. (1995) In situ localization and quantification of seventytwo- kilodalton type IV collagenase in aneurysmal, occlusive, and normal aorta. J. Vasc. Surg. 22, 295-305. <https://doi.org/10.1016/S0741-5214(95)70144-3>
25. Newby, A. C. (2008) Metalloproteinase expression in monocytes and macrophages and its relationship to atherosclerotic plaque instability. Arterioscler. Thromb. Vasc. Biol. 28, 2108-2114. <https://doi.org/10.1161/ATVBAHA.108.173898>
26. Newby, A. C. (2005) Dual role of matrix metalloproteinases (matrixins) in intimal thickening and atherosclerotic plaque rupture. Physiol. Rev. 85, 1-31. <https://doi.org/10.1152/physrev.00048.2003>
27. Orbe, J., Fernandez, L., Rodrigues, J. A., Rabago, G., Belzunce, M., Monasterio, A., Ronca, C., Paramo, J. A. (2003) Different expression of MMPs/TIMP-1 in human atherosclerotic lesions. Relation to plaque features and vascular bed. Atherosclerosis 170, 269-276. <https://doi.org/10.1016/S0021-9150(03)00251-X>
28. Pasterkamp, G., De Kleijn, D. P. V., Borst, C. (2000) Arterial remodeling in atherosclerosis, restenosis and after alteration of blood flow: potential mechanisms and clinical implications. Cardiovasc. Res. 45, 843-852. <https://doi.org/10.1016/S0008-6363(99)00377-6>
29. Peshkova, I. O., Schaefer, G., Koltsova, E. K. (2016) Atherosclerosis and aortic aneurysm – is inflammation a common denominator? FEBS J. 283, 1636-1652. <https://doi.org/10.1111/febs.13634>
30. Petersen, E., Gineitis, A., Wagberg, F., Angquist, K. A. (2000) Activity of matrix metalloproteinase-2 and -9 in abdominal aortic aneurysms. Relation to size and rupture. Eur. J. Vasc. Endovasc. Surg. 20, 457-461. <https://doi.org/10.1053/ejvs.2000.1211>
31. Reeps, S., Kehl, S., Tanios, F., Biehler, J., Pelisek, J., Wall, W. A., Eckstein, H. H., Gee, M. W. (2014) Biomechanics and gene expression in abdominal aortic aneurysm. J. Vasc. Surgery 60, 1640-1647. <https://doi.org/10.1016/j.jvs.2014.08.076>
32. Ruddy, J. M., Jones, J. A., Spinale, F. G., Ikonomidis, J. S. (2008) Regional heterogeneity within the aorta: relevance to aneurysm disease. J. Thorac. Cardiovasc. Surg. 136, 1123-1130. <https://doi.org/10.1016/j.jtcvs.2008.06.027>
33. Saratzis, A., Bown, M. J. (2014) The genetic basis for aortic aneurysmal disease. Heart 100, 916-922. <https://doi.org/10.1136/heartjnl-2013-305130>
34. Theruvath, T. P., Jones, J. A., Ikonomidis, J. S. (2012) Matrix metalloproteinases and descending aortic aneurysms: parity, disparity, and switch. J. Card. Surg. 27, 81-90. <https://doi.org/10.1111/j.1540-8191.2011.01315.x>
35. Vanhoutte, D., Heymans, S. (2010) TIMPs and cardiac remodeling: ‘Embracing the MMP-independent-side of the family’. J. Mol. Cell. Cardiol. 48, 445-453. <https://doi.org/10.1016/j.yjmcc.2009.09.013>
36. Wooten, C., Hayat, M., Du Plessis, M., Cesmebasi, A., Koesterer, M., Daly, K. P., Matusz, P., Tubbs, R. S., Loukas, M. (2014) Anatomical significance in aortoiliac occlusive disease. Clin. Anat. 27, 1264-1274. <https://doi.org/10.1002/ca.22444>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Archive