Fol. Biol. 2017, 63, 174-181

https://doi.org/10.14712/fb2017063050174

Pilot Study of the Occurrence of Somatic Mutations in Ciliary Signalling Pathways as a Contribution Factor to Autosomal Dominant Polycystic Kidney Development

Katarína Skalická1, G. Hrčková1, A. Vaská1, A. Baranyaiová1, P. Janega2, Z. Žilinská3, D. Daniš4, L. Kovács1

1Laboratory of Clinical and Molecular Genetics, Department of Paediatrics, Faculty of Medicine, Comenius University and University Children’s Hospital, Bratislava, Slovakia
2Institute of Pathological Anatomy, Faculty of Medicine, Comenius University, Bratislava, Slovakia
3Urology Clinic with the Centre for Kidney Transplantation, University Hospital Bratislava, Slovakia
4Cytopathos laboratory, Bratislava, Slovakia

Received August 2017
Accepted December 2017

References

1. Basten, S. G., Giles, R. H. (2013) Functional aspects of primary cilia in signaling, cell cycle and tumorigenesis. Cilia 2, 6. <https://doi.org/10.1186/2046-2530-2-6>
2. Bastos, A. P., Onuchic, L. F. (2011) Molecular and cellular pathogenesis of autosomal dominant polycystic kidney disease. Braz. J. Med. Biol. Res. 44, 606-617. <https://doi.org/10.1590/S0100-879X2011007500068>
3. Brzóska, H. L., d’Esposito, A. M., Kolatsi-Joannou, M., Patel, V., Igarashi, P., Lei, Y., Finnell, R. H., Lythgoe, M. F., Woolf, A. S., Papakrivopoulou, E., Long, D. A. (2016) Planar cell polarity genes Celsr1 and Vangl2 are necessary for kidney growth, differentiation, and rostrocaudal patterning. Kidney Int. 90, 1274-1284. <https://doi.org/10.1016/j.kint.2016.07.011>
4. Christ, A., Herzog, K., Willnow, T. E. (2016) LRP2, an auxiliary receptor that controls sonic hedgehog signaling in development and disease. Dev. Dyn. 245, 569-579. <https://doi.org/10.1002/dvdy.24394>
5. de Almeida, R. M., Clendenon, S. G., Richards, W. G., Boedigheimer, M., Damore, M., Rossetti, S., Harris, P. C., Herbert, B. S., Xu, W. M., Wandinger-Ness, A., Ward, H. H., Glazier, J. A., Bacallao, R. L. (2016) Transcriptome analysis reveals manifold mechanisms of cyst development in ADPKD. Hum. Genomics 10, 37. <https://doi.org/10.1186/s40246-016-0095-x>
6. Grantham, J. J., Mulamalla, S., Grantham, C. J., Wallace, D. P., Cook, L. T., Wetzel, L. H., Fields, T. A., Bae, K. T. (2012) Detected renal cysts are tips of the iceberg in adults with ADPKD. Clin. J. Am. Soc. Nephrol. 7, 1087-1093. <https://doi.org/10.2215/CJN.00900112>
7. Happé, H., van der Wal, A. M., Leonhard, W. N., Kunnen, S. J., Breuning, M. H., de Heer, E., Peters, D. J. (2011) Altered Hippo signalling in polycystic kidney disease. J. Pathol. 224, 133-142. <https://doi.org/10.1002/path.2856>
8. Happé, H., Peters, D. J. (2014) Translational research in ADPKD: lessons from animal models. Nat. Rev. Nephrol. 10, 587-601. <https://doi.org/10.1038/nrneph.2014.137>
9. Heck, B. W., Zhang, B., Tong, X., Pan, Z., Deng, W. M., Tsai, C. C. (2012) The transcriptional corepressor SMRTER influences both Notch and ecdysone signalling during Drosophila development. Biol. Open 1, 182-196. <https://doi.org/10.1242/bio.2011047>
10. Kim, S., Nie, H., Nesin, V., Tran, U., Outeda, P., Bai, C. X., Keeling, J., Maskey, D., Watnick. T., Wessely, O., Tsiokas, L. (2016) The polycystin complex mediates Wnt/Ca (2+) signalling. Nat. Cell Biol. 18, 752-764. <https://doi.org/10.1038/ncb3363>
11. Kim, D. Y., Park, J. H. (2016) Genetic mechanisms of ADPKD. Adv. Exp. Med. Biol. 993, 13-22. <https://doi.org/10.1007/978-981-10-2041-4_2>
12. Lal, M., Song, X., Pluznick, J. L., Di Giovanni, V., Merrick, D. M., Rosenblum, N. D., Chauvet, V., Gottardi, C. J., Pei, Y., Caplan, M. J. (2008) Polycystin-1 C-terminal tail associates with β-catenin and inhibits canonical Wnt signaling. Hum. Mol. Genet. 17, 3105-3117. <https://doi.org/10.1093/hmg/ddn208>
13. Lee, S. H., Somlo, S. (2014) Cyst growth, polycystins, and primary cilia in autosomal dominant polycystic kidney disease. Kidney Res. Clin. Pract. 33, 73-78. <https://doi.org/10.1016/j.krcp.2014.05.002>
14. Ma, M., Tian, X., Igarashi, P., Pazour, G. J., Somlo, S. (2013) Loss of cilia supresses cyst growth in genetic models of autosomal dominant polycystic kidney disease. Nat. Genet. 45, 1004-1012. <https://doi.org/10.1038/ng.2715>
15. Mukhopadhyay, S., Badgandi, H. B., Hwang, S. H., Somatilaka, B., Shimada, I. S., Pal, K. (2017) Trafficking to the primary cilium membrane. Mol. Biol. Cell. 28, 233-239. <https://doi.org/10.1091/mbc.e16-07-0505>
16. Nachury, M. V. (2014) How do cilia organize signalling cascades? Philos. Trans. R. Soc. Lond. B Biol. Sci. 5, 369.
17. Plouffe, S. W., Hong, A. W., Guan, K. L. (2015) Disease implication of the Hippo/Yap pathway. Trends Mol. Med. 21, 212-222. <https://doi.org/10.1016/j.molmed.2015.01.003>
18. Porath, B., Gainullin, V. G., Cornec-Le Gall, E., Dillinger, E. K., Heyer, C. M., Hopp, K., Edwards, M. E., Madsen, C. D., Mauritz, S. R., Banks, C. J., Baheti, S., Reddy, B., Herrero, J. I., Bañales, J. M., Hogan, M. C., Tasic, V., Watnick, T. J., Chapman, A. B., Vigneau, C., Lavainne, F., Audrézet, M. P., Ferec, C., Le Meur, Y., Torres, V. E., Genkyst Study Group, HALT Progression of Polycystic Kidney Disease Group, Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease, Harris, P. C. (2016) Mutations in GANAB, encoding the glucosidase IIα subunit, cause autosomal-dominant polycystic kidney and liver disease. Am. J. Hum. Genet. 98, 1193-1207. <https://doi.org/10.1016/j.ajhg.2016.05.004>
19. Rehm, H. L., Bale, S. J., Bayrak-Toydemir, P., Berg, J. S., Brown, K. K., Deignan, J. L., Friez, M. J., Funke, B. H., Hegde, M. R., Lyon, E., Working Group of the American College of Medical Genetics and Genomics Laboratory Quality Assurance Committee (2013) ACMG clinical laboratory standards for next-generation sequencing. Genet. Med. 15, 733-747. <https://doi.org/10.1038/gim.2013.92>
20. Richards, S., Aziz, N., Bale, S., Bick, D., Das, S., Gastier-Foster, J., Grody, W. W., Hegde, M., Lyon, E., Spector, E., Voelkerding, K., Rehm, H. L., ACMG Laboratory Quality Assurance Committee (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17, 405-424. <https://doi.org/10.1038/gim.2015.30>
21. Saburi, S., Hester, I., Fischer, E., Pontoglio, M., Eremina, V., Gessler, M., Quaggin, S. E., Harrison, R., Mount, R., Mc- Neill, H. (2008) Loss of Fat4 disrupts PCP signaling and oriented cell division and leads to cystic kidney disease. Nat. Genet. 40, 1010-1015. <https://doi.org/10.1038/ng.179>
22. Sirin, Y., Susztak, K. (2012) The role of Notch in the kidney, development and beyond. J. Pathol. 226, 394-403. <https://doi.org/10.1002/path.2967>
23. Spithoven, E. M., Kramer, A., Meijer, E., Orskov, B., Wanner, C., Abad, J. M., Aresté, N., de la Torre, R. A., Caskey, F., Couchoud, C., Finne, P., Heaf, J., Hoitsma, A., de Meester, J., Pascual, J., Postorino, M., Ravani, P., Zurriaga, O., Jager, K. J., Gansevoort, R. T. ERA-EDTA Registry; EuroCYST Consortium; WGIKD. (2014) Renal replacement therapy for autosomal dominant polycystic kidney disease (ADPKD) in Europe: prevalence and survival – an analysis of data from ERA-ESTA Registry. Nephrol. Dial. Transplant. 4, 15-25. <https://doi.org/10.1093/ndt/gfu017>
24. Surendran, K., Selassie, M., Liapis, H., Krigman, H., Kopan, R. (2010) Reduced Notch signaling leads to renal cysts and papillary microadenomas. J. Am. Soc. Nephrol. 21, 819-832. <https://doi.org/10.1681/ASN.2009090925>
25. Tran, P. V., Talbott, G. C., Turbe-Doan, A., Jacobs, D. T., Schonfeld, M. P., Silva, L. M., Chatterjee, A., Prysak, M., Allard, B. A., Beier, D. R. (2014) Downregulating hedgehog signaling reduces renal cystogenic potential of mouse models. J. Am. Soc. Nephrol. 25, 2201-2212. <https://doi.org/10.1681/ASN.2013070735>
26. Wang, W., Li, F., Sun, Y., Lei, L., Zhou, H., Lei, T., Xia, Y., Verkman, A. S., Yang, B. (2015) Aquaporin-1 retards renal cyst development in polycystic kidney disease by inhibition of Wnt signaling. FASEB J. 29, 1551-1553. <https://doi.org/10.1096/fj.14-260828>
27. Wong, J. S., Meliambro, K., Ray, J., Cambell, K. N. (2016) Hippo signalling in the kidney: the good and the bad. Am. J. Physiol. Renal Physiol. 311, F241-248. <https://doi.org/10.1152/ajprenal.00500.2015>
28. Zhipeng, M., Toshiro, M., Kun-Liang, G. (2016) Mechanisms of Hippo pathway regulation. Genes Dev. 30, 1-17.
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Submissions

Archive