Fol. Biol. 2017, 63, 174-181
https://doi.org/10.14712/fb2017063050174
Pilot Study of the Occurrence of Somatic Mutations in Ciliary Signalling Pathways as a Contribution Factor to Autosomal Dominant Polycystic Kidney Development
References
1. 2013) Functional aspects of primary cilia in signaling, cell cycle and tumorigenesis. Cilia 2, 6.
< , S. G., Giles, R. H. (https://doi.org/10.1186/2046-2530-2-6>
2. 2011) Molecular and cellular pathogenesis of autosomal dominant polycystic kidney disease. Braz. J. Med. Biol. Res. 44, 606-617.
< , A. P., Onuchic, L. F. (https://doi.org/10.1590/S0100-879X2011007500068>
3. 2016) Planar cell polarity genes Celsr1 and Vangl2 are necessary for kidney growth, differentiation, and rostrocaudal patterning. Kidney Int. 90, 1274-1284.
< , H. L., d’Esposito, A. M., Kolatsi-Joannou, M., Patel, V., Igarashi, P., Lei, Y., Finnell, R. H., Lythgoe, M. F., Woolf, A. S., Papakrivopoulou, E., Long, D. A. (https://doi.org/10.1016/j.kint.2016.07.011>
4. 2016) LRP2, an auxiliary receptor that controls sonic hedgehog signaling in development and disease. Dev. Dyn. 245, 569-579.
< , A., Herzog, K., Willnow, T. E. (https://doi.org/10.1002/dvdy.24394>
5. 2016) Transcriptome analysis reveals manifold mechanisms of cyst development in ADPKD. Hum. Genomics 10, 37.
< , R. M., Clendenon, S. G., Richards, W. G., Boedigheimer, M., Damore, M., Rossetti, S., Harris, P. C., Herbert, B. S., Xu, W. M., Wandinger-Ness, A., Ward, H. H., Glazier, J. A., Bacallao, R. L. (https://doi.org/10.1186/s40246-016-0095-x>
6. 2012) Detected renal cysts are tips of the iceberg in adults with ADPKD. Clin. J. Am. Soc. Nephrol. 7, 1087-1093.
< , J. J., Mulamalla, S., Grantham, C. J., Wallace, D. P., Cook, L. T., Wetzel, L. H., Fields, T. A., Bae, K. T. (https://doi.org/10.2215/CJN.00900112>
7. 2011) Altered Hippo signalling in polycystic kidney disease. J. Pathol. 224, 133-142.
< , H., van der Wal, A. M., Leonhard, W. N., Kunnen, S. J., Breuning, M. H., de Heer, E., Peters, D. J. (https://doi.org/10.1002/path.2856>
8. 2014) Translational research in ADPKD: lessons from animal models. Nat. Rev. Nephrol. 10, 587-601.
< , H., Peters, D. J. (https://doi.org/10.1038/nrneph.2014.137>
9. 2012) The transcriptional corepressor SMRTER influences both Notch and ecdysone signalling during Drosophila development. Biol. Open 1, 182-196.
< , B. W., Zhang, B., Tong, X., Pan, Z., Deng, W. M., Tsai, C. C. (https://doi.org/10.1242/bio.2011047>
10. 2016) The polycystin complex mediates Wnt/Ca (2+) signalling. Nat. Cell Biol. 18, 752-764.
< , S., Nie, H., Nesin, V., Tran, U., Outeda, P., Bai, C. X., Keeling, J., Maskey, D., Watnick. T., Wessely, O., Tsiokas, L. (https://doi.org/10.1038/ncb3363>
11. 2016) Genetic mechanisms of ADPKD. Adv. Exp. Med. Biol. 993, 13-22.
< , D. Y., Park, J. H. (https://doi.org/10.1007/978-981-10-2041-4_2>
12. 2008) Polycystin-1 C-terminal tail associates with β-catenin and inhibits canonical Wnt signaling. Hum. Mol. Genet. 17, 3105-3117.
< , M., Song, X., Pluznick, J. L., Di Giovanni, V., Merrick, D. M., Rosenblum, N. D., Chauvet, V., Gottardi, C. J., Pei, Y., Caplan, M. J. (https://doi.org/10.1093/hmg/ddn208>
13. 2014) Cyst growth, polycystins, and primary cilia in autosomal dominant polycystic kidney disease. Kidney Res. Clin. Pract. 33, 73-78.
< , S. H., Somlo, S. (https://doi.org/10.1016/j.krcp.2014.05.002>
14. 2013) Loss of cilia supresses cyst growth in genetic models of autosomal dominant polycystic kidney disease. Nat. Genet. 45, 1004-1012.
< , M., Tian, X., Igarashi, P., Pazour, G. J., Somlo, S. (https://doi.org/10.1038/ng.2715>
15. 2017) Trafficking to the primary cilium membrane. Mol. Biol. Cell. 28, 233-239.
< , S., Badgandi, H. B., Hwang, S. H., Somatilaka, B., Shimada, I. S., Pal, K. (https://doi.org/10.1091/mbc.e16-07-0505>
16. 2014) How do cilia organize signalling cascades? Philos. Trans. R. Soc. Lond. B Biol. Sci. 5, 369.
, M. V. (
17. 2015) Disease implication of the Hippo/Yap pathway. Trends Mol. Med. 21, 212-222.
< , S. W., Hong, A. W., Guan, K. L. (https://doi.org/10.1016/j.molmed.2015.01.003>
18. 2016) Mutations in GANAB, encoding the glucosidase IIα subunit, cause autosomal-dominant polycystic kidney and liver disease. Am. J. Hum. Genet. 98, 1193-1207.
< , B., Gainullin, V. G., Cornec-Le Gall, E., Dillinger, E. K., Heyer, C. M., Hopp, K., Edwards, M. E., Madsen, C. D., Mauritz, S. R., Banks, C. J., Baheti, S., Reddy, B., Herrero, J. I., Bañales, J. M., Hogan, M. C., Tasic, V., Watnick, T. J., Chapman, A. B., Vigneau, C., Lavainne, F., Audrézet, M. P., Ferec, C., Le Meur, Y., Torres, V. E., Genkyst Study Group, HALT Progression of Polycystic Kidney Disease Group, Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease, Harris, P. C. (https://doi.org/10.1016/j.ajhg.2016.05.004>
19. 2013) ACMG clinical laboratory standards for next-generation sequencing. Genet. Med. 15, 733-747.
< , H. L., Bale, S. J., Bayrak-Toydemir, P., Berg, J. S., Brown, K. K., Deignan, J. L., Friez, M. J., Funke, B. H., Hegde, M. R., Lyon, E., Working Group of the American College of Medical Genetics and Genomics Laboratory Quality Assurance Committee (https://doi.org/10.1038/gim.2013.92>
20. 2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17, 405-424.
< , S., Aziz, N., Bale, S., Bick, D., Das, S., Gastier-Foster, J., Grody, W. W., Hegde, M., Lyon, E., Spector, E., Voelkerding, K., Rehm, H. L., ACMG Laboratory Quality Assurance Committee (https://doi.org/10.1038/gim.2015.30>
21. 2008) Loss of Fat4 disrupts PCP signaling and oriented cell division and leads to cystic kidney disease. Nat. Genet. 40, 1010-1015.
< , S., Hester, I., Fischer, E., Pontoglio, M., Eremina, V., Gessler, M., Quaggin, S. E., Harrison, R., Mount, R., Mc- Neill, H. (https://doi.org/10.1038/ng.179>
22. 2012) The role of Notch in the kidney, development and beyond. J. Pathol. 226, 394-403.
< , Y., Susztak, K. (https://doi.org/10.1002/path.2967>
23. 2014) Renal replacement therapy for autosomal dominant polycystic kidney disease (ADPKD) in Europe: prevalence and survival – an analysis of data from ERA-ESTA Registry. Nephrol. Dial. Transplant. 4, 15-25.
< , E. M., Kramer, A., Meijer, E., Orskov, B., Wanner, C., Abad, J. M., Aresté, N., de la Torre, R. A., Caskey, F., Couchoud, C., Finne, P., Heaf, J., Hoitsma, A., de Meester, J., Pascual, J., Postorino, M., Ravani, P., Zurriaga, O., Jager, K. J., Gansevoort, R. T. ERA-EDTA Registry; EuroCYST Consortium; WGIKD. (https://doi.org/10.1093/ndt/gfu017>
24. 2010) Reduced Notch signaling leads to renal cysts and papillary microadenomas. J. Am. Soc. Nephrol. 21, 819-832.
< , K., Selassie, M., Liapis, H., Krigman, H., Kopan, R. (https://doi.org/10.1681/ASN.2009090925>
25. 2014) Downregulating hedgehog signaling reduces renal cystogenic potential of mouse models. J. Am. Soc. Nephrol. 25, 2201-2212.
< , P. V., Talbott, G. C., Turbe-Doan, A., Jacobs, D. T., Schonfeld, M. P., Silva, L. M., Chatterjee, A., Prysak, M., Allard, B. A., Beier, D. R. (https://doi.org/10.1681/ASN.2013070735>
26. 2015) Aquaporin-1 retards renal cyst development in polycystic kidney disease by inhibition of Wnt signaling. FASEB J. 29, 1551-1553.
< , W., Li, F., Sun, Y., Lei, L., Zhou, H., Lei, T., Xia, Y., Verkman, A. S., Yang, B. (https://doi.org/10.1096/fj.14-260828>
27. 2016) Hippo signalling in the kidney: the good and the bad. Am. J. Physiol. Renal Physiol. 311, F241-248.
< , J. S., Meliambro, K., Ray, J., Cambell, K. N. (https://doi.org/10.1152/ajprenal.00500.2015>
28. 2016) Mechanisms of Hippo pathway regulation. Genes Dev. 30, 1-17.
, M., Toshiro, M., Kun-Liang, G. (