Fol. Biol. 2018, 64, 16-22

https://doi.org/10.14712/fb2018064010016

Lactoferrin Prevents Susceptibility of WEHI 231 Cells to Anti-Ig-Induced Cell Death Promoting Cell Differentiation

E. Zaczyńska1, I. Kochanowska1, M. Kruzel2, Michał Zimecki1

1Department of Experimental Therapy, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
2McGovern Medical School, University of Texas, Health Science Center, Houston, Texas, USA

Received October 2017
Accepted April 2018

References

1. Artym, J., Zimecki, M., Kruzel, M. L. (2003a) Reconstitution of the cellular immune response by lactoferrin in cyclophosphamide- treated mice is correlated with renewal of T cell compartment. Immunobiology 207, 197-205. <https://doi.org/10.1078/0171-2985-00233>
2. Artym, J., Zimecki, M., Paprocka, M., Kruzel, M. L. (2003b) Orally administered lactoferrin restores humoral immune response in immunocompromised mice. Immunol Lett. 89, 9-15. <https://doi.org/10.1016/S0165-2478(03)00102-0>
3. Baixeras, E., Cebrián, A., Albar, J. P., Salas, J., Martínez, A. C., Viñuela, E., Revilla, Y. (1998) Vaccinia virus-induced apoptosis in immature B lymphocytes: role of cellular Bcl-2. Virus Res. 58, 107-113. <https://doi.org/10.1016/S0168-1702(98)00105-1>
4. Benhamou, L. E., Cazenave, P. A., Sarthou, P. (1990) Antiimmunoglobulins induce death by apoptosis in WEHI-231 B lymphoma cells. Eur. J. Immunol. 20, 1405-1407. <https://doi.org/10.1002/eji.1830200630>
5. Benjamin, D., Rosolen, A., Wormsley, S. B., DeBault, L. E., Colamonici, O. R. (1990) Expression of low-, intermediate-, and high-affinity IL-2 receptors on B cell lines derived from patients with undifferentiated lymphoma of Burkitt’s and non-Burkitt’s types. Cell Immunol. 129, 112-124. <https://doi.org/10.1016/0008-8749(90)90191-S>
6. Blais, A., Fan, C., Voisin, T., Aattouri, N., Dubarry, M., Blachier, F., Tomé, D. (2014) Effects of lactoferrin on intestinal epithelial cell growth and differentiation: an in vivo and in vitro study. Biometals 27, 857-874. <https://doi.org/10.1007/s10534-014-9779-7>
7. Bovd, A. W., Schrader, J. W. (1981) The regulation of growth and differentiation of a murine B cell lymphoma. II. The inhibition of WEHI 231 by anti-immunoglobulin antibodies. J. Immunol. 126, 2466-24669.
8. Brás, A., Ruiz-Vela, A., González de Buitrago, G., Martinez, A.C. (1999) Caspase activation by BCR cross-linking in immature B cells: differential effects on growth arrest and apoptosis. FASEB J. 13, 931-944. <https://doi.org/10.1096/fasebj.13.8.931>
9. Brown, T. L., Patil, S., Cianci, C. D., Morrow, J. S., Howe, P. H. (1999) Transforming growth factor β induces caspase 3-independent cleavage of α II-spectrin (α-fodrin) coincident with apoptosis. J. Biol. Chem. 274, 23256-23262. <https://doi.org/10.1074/jbc.274.33.23256>
10. Chen, J., Ma, A., Young, F., Alt, F. W. (1994) IL-2 receptor α chain expression during early B lymphocyte differentiation. Int. Immunol. 6, 1265-1268. <https://doi.org/10.1093/intimm/6.8.1265>
11. de la Rosa, G., Yang, D., Tewary, P., Varadhachary, A., Oppenheim, J. J. (2008) Lactoferrin acts as an alarmin to promote the recruitment and activation of APCs and antigenspecific immune responses. J. Immunol. 180, 6868–6876. <https://doi.org/10.4049/jimmunol.180.10.6868>
12. Dhennin-Duthille, I., Masson, M., Damiens, E., Fillebeen, C., Spik, G., Mazurier, J. (2000) Lactoferrin upregulates the expression of CD4 antigen through the stimulation of the mitogen-activated protein kinase in the human lymphoblastic T Jurkat cell line. J. Cell. Biochem. 79, 583-593. <https://doi.org/10.1002/1097-4644(20001215)79:4<583::AID-JCB70>3.0.CO;2-9>
13. Francis, N., Wong, S.H., Hampson, P., Wang, K., Young, S.P., Deigner, H.P., Salmon, M., Scheel-Toellner, D., Lord, J.M. (2011) Lactoferrin inhibits neutrophil apoptosis via blockade of proximal apoptotic signaling events. Biochim. Biophys. Acta 1813, 1822-1826. <https://doi.org/10.1016/j.bbamcr.2011.07.004>
14. Fujita, K., Matsuda, E., Sekine, K., Iigo, M., Tsuda, H. (2004) Lactoferrin enhances Fas expression and apoptosis in the colon mucosa of azoxymethane-treated rats. Carcinogenesis 25, 1961-1966. <https://doi.org/10.1093/carcin/bgh205>
15. Gibbons, J. A., Kanwar, J. R., Kanwar, R. K. (2015) Iron-free and iron-saturated bovine lactoferrin inhibit survivin expression and differentially modulate apoptosis in breast cancer. BMC Cancer 15, 425. <https://doi.org/10.1186/s12885-015-1441-4>
16. Gottschalk, A. R., Boise, L. H., Thompson, C. B., Quintáns, J. (1994a) Identification of immunosuppressant-induced apoptosis in a murine B-cell line and its prevention by bcl-x but not bcl-2. Proc. Natl. Acad. Sci. USA 91, 7350-7354. <https://doi.org/10.1073/pnas.91.15.7350>
17. Gottschalk, A. R., Mc Shan, C. L., Merino, R., Nuñez, G., Quintáns, J. (1994b) Physiological cell death in B lymphocytes: I. Differential susceptibility of WEHI-231 sublines to anti-Ig induced physiological cell death and lack of correlation with bcl-2 expression. Int. Immunol. 6, 121-130. <https://doi.org/10.1093/intimm/6.1.121>
18. Graham, C., Matta, H., Yang, Y., Yi, H., Suo, Y., Tolani, B., Chaudhary, P. M. (2013) Kaposi’s sarcoma-associated herpesvirus oncoprotein K13 protects against B cell receptorinduced growth arrest and apoptosis through NF-κB activation. J. Virol. 87, 2242-2252. <https://doi.org/10.1128/JVI.01393-12>
19. Hansen, M. B., Nielsen, S. E., Berg, K. (1989) Re-examination and further development of precise and rapid dye method for measuring cell growth/cell kill. J. Immunol. Methods 119, 203-210. <https://doi.org/10.1016/0022-1759(89)90397-9>
20. Herold, M. J., Kuss, A. W., Kraus, C., Berberich. I. (2002) Mitochondria-dependent caspase-9 activation is necessary for antigen receptor-mediated effector caspase activation and apoptosis in WEHI 231 lymphoma cells. J. Immunol. 168, 3902-3909. <https://doi.org/10.4049/jimmunol.168.8.3902>
21. Hou, J. M., Chen, E. Y., Wei, S. C., Lin, F., Lin, Q. M., Lan, X. H., Xue, Y., Wu, M. (2014) Lactoferrin inhibits apoptosis through insulin-like growth factor I in primary rat osteoblasts. Acta Pharmacol. Sin. 35, 523-530. <https://doi.org/10.1038/aps.2013.173>
22. Jakway, J. P., Usinger, W. R., Gold, M. R., Mishell, R. I., De- Franco, A. L. (1986) Growth regulation of the B lymphoma cell line WEHI-231 by anti-immunoglobulin, lipopolysaccharide, and other bacterial products. J. Immunol. 137, 2225-2231. <https://doi.org/10.4049/jimmunol.137.7.2225>
23. Kruzel, M. L., Actor, J., Boldogh, K., Zimecki, M. (2007) Lactoferrin in health and disease. Postepy Hig. Med. Dosw. (Online) 61, 261-267.
24. Kruzel, M. L., Zimecki, M., Actor, J. (2017) Lactoferrin in a context of inflammation-induced pathology. Front. Immunol. 8, 1438. <https://doi.org/10.3389/fimmu.2017.01438>
25. Legrand, D. (2012) Lactoferrin, a key molecule in immune and inflammatory processes. Biochem. Cell Biol. 90, 252-268. <https://doi.org/10.1139/o11-056>
26. Liu, M., Fan, F., Shi, P., Tu, M., Yu, C., Yu, C., Du, M. (2018) Lactoferrin promotes MC3T3-E1 osteoblast cells proliferation via MAPK signaling pathways. Int. J. Biol. Macromol. 107, 137-143. <https://doi.org/10.1016/j.ijbiomac.2017.08.151>
27. Mineva, N. D., Rothstein, T. L., Meyers, J. A., Lerner, A., Sonenshein, G. E. (2007) CD40 ligand-mediated activation of the de novo RelB NF-κB synthesis pathway in transformed B cells promotes rescue from apoptosis. J. Biol. Chem. 282, 17475-17485. <https://doi.org/10.1074/jbc.M607313200>
28. Nossal, G. J. (1987) Bone marrow pre-B cells and the clonal anergy theory of immunologic tolerance. Int. Rev. Immunol. 2, 321-338. <https://doi.org/10.3109/08830188709044760>
29. Pietrantoni, A., Dofrelli, E., Tinari, A., Ammendolia, M. G., Puzelli, S., Fabiani, C., Donatelli, I., Superti, F. (2010) Bovine lactoferrin inhibits influenza A virus induced programmed cell death in vitro. Biometals 23, 465-475. <https://doi.org/10.1007/s10534-010-9323-3>
30. Raff, M. C., Owen, J. J., Cooper, M. D., Lawton, A. R 3rd, Megson, M., Gathings, W. E. (1975) Differences in susceptibility of mature and immature mouse B lymphocytes to anti-immunoglobulin-induced immunoglobulin suppression in vitro. Possible implications for B-cell tolerance to self. J. Exp. Med. 142, 1052-1064. <https://doi.org/10.1084/jem.142.5.1052>
31. Rott, O., Cash, E. (1994) Influenza virus hemagglutinin induces differentiation of mature resting B cells and growth arrest of immature WEHI-231 lymphoma cells. J. Immunol. 152, 5381-5391. <https://doi.org/10.4049/jimmunol.152.11.5381>
32. Sato, S., Tuscano, J. M., Inaoki, M., Tedder, T. F. (1998) CD22 negatively and positively regulates signal transduction through the B lymphocyte antigen receptor. Semin. Immunol. 10, 287-297. <https://doi.org/10.1006/smim.1998.0121>
33. Shan, T., Wang, Y., Wang, Y., Liu, J., Xu, Z. (2007) Effect of dietary lactoferrin on the immune functions and serum iron level of weanling piglets. J. Anim. Sci. 85, 2140-2146. <https://doi.org/10.2527/jas.2006-754>
34. Steinberger, I., Ben-Bassat, H., Hochberg, E., Lorberboum- Galski, H. (1997) Interleukin-2 (IL-2) receptor α, β and γ subunit expression as a function of B-cell lineage ontogeny: the use of IL-2-PE66 (4Glu) to characterize internalization via IL-2 receptor subunits. Scand. J. Immunol. 46, 129-136. <https://doi.org/10.1046/j.1365-3083.1997.d01-101.x>
35. Szewczuk, M. R., Siskind, G. W. (1977) Ontogeny of B lymphocyte function. III. In vivo and in vitro studies on the case of tolerance induction in B lymphocytes from fetal, neonatal, and adult mice. J. Exp. Med. 145, 1590-1601. <https://doi.org/10.1084/jem.145.6.1590>
36. Tanaka, T., Saiki, O., Doi, S., Suemura, M., Negoro, S., Kishimoto, S. (1988) Expression of novel interleukin 2 binding molecules and their functional roles in human B cell differentiation. J. Clin. Invest. 82, 316-321. <https://doi.org/10.1172/JCI113589>
37. Tu, Y., Xue, H., Francis, W., Davies, A. P., Pallister, I., Kanamarlapudi, V., Xia, Z. (2013) Lactoferrin inhibits dexamethasone- induced chondrocyte impairment from osteoarthritic cartilage through up-regulation of extracellular signal-regulated kinase 1/2 and suppression of FASL, FAS, and Caspase 3. Biochem. Biophys. Res. Commun. 441, 249-255. <https://doi.org/10.1016/j.bbrc.2013.10.047>
38. Xue, H., Tu, Y., Ma, T., Liu, X., Wen, T., Cai, M., Xia, Z., Mei, J. (2015) Lactoferrin inhibits IL-1α-induced chondrocyte apoptosis through AKT1-induced CREB1 activation. Cell. Physiol. Biochem. 36, 2456-2465. <https://doi.org/10.1159/000430206>
39. Yoshida, T., Higuchi, T., Hagiyama, H., Strasser, A., Nishioka, K., Tsubata, T. (2000) Rapid B cell apoptosis induced by antigen receptor ligation does not require Fas (CD95/ APO-1), the adaptor protein FADD/MORT1 or CrmA-sensitive caspases but is defective in both MRL-+/+ and MRLlpr/ lpr mice. Int. Immunol. 12, 517-526. <https://doi.org/10.1093/intimm/12.4.517>
40. Zhang, Y., Nicolau, A., Lima, C. F., Rodrigues, L. R. (2014) Bovine lactoferrin induces cell cycle arrest and inhibits mTOR signaling in breast cancer cells. Nutr. Cancer 66, 1371-1385. <https://doi.org/10.1080/01635581.2014.956260>
41. Zheng, Y., Zhang, W., Ye, Q., Zhou, Y., Xiong, W., He, W., Deng, M., Zhou, M., Guo, X., Chen, P., Fan, S., Liu, X., Wang, Z., Li, X., Ma, J., Li, G. (2012) Inhibition of Epstein- Barr virus infection by lactoferrin. J. Innate Immun. 4, 387-398. <https://doi.org/10.1159/000336178>
42. Zimecki, M., Mazurier, J., Machnicki, M., Wieczorek, Z., Montreuil, J., Spik, G. (1991) Immunostimulatory activity of lactotransferrin and maturation of CD4- CD8- murine thymocytes. Immunol. Lett. 30, 119-123. <https://doi.org/10.1016/0165-2478(91)90099-V>
43. Zimecki, M., Mazurier, J., Spik, G., Kapp, J. A. (1995) Human lactoferrin induces phenotypic and functional changes in murine splenic B cells. Immunology 86, 122-127.
44. Zimecki, M., Artym, J., Kocięba, M., Kaleta-Kuratewicz, K., Kuropka, P., Kuryszko, J., Kruzel, M. L. (2013) Homologous lactoferrin triggers mobilization of the myelocytic lineage of bone marrow in experimental mice. Stem Cells Dev. 22, 3261-3270. <https://doi.org/10.1089/scd.2013.0242>
45. Zimecki, M., Artym, J., Kocięba, M., Duk, M., Kruzel, M. L. (2014) The effect of carbohydrate moiety structure on the immunoregulatory activity of lactoferrin in vitro. Cell. Mol. Biol. Lett. 19, 284-296. <https://doi.org/10.2478/s11658-014-0196-2>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Archive