Fol. Biol. 2018, 64, 103-111
PARP-1 Involvement in Autophagy and Their Roles in Apoptosis of Vascular Smooth Muscle Cells under Oxidative Stress
Autophagy and poly(ADP-ribose) polymerase 1 (PARP-1) are activated and involved in a series of cell processes under oxidative stress, which is associated with pathogenesis of atherosclerosis. Research on their relationship under oxidative stress has been limited. In this study, we aimed to investigate the activation, relationship, and role of autophagy and PARP-1 in vascular smooth muscle cell (VSMC) death under oxidative stress. This study explored the signal molecule PARP-1 and autophagy in VSMCs using gene silencing and the hydrogen peroxide (H2O2)-stimulated oxidative stress model. We observed that H2O2 could induce autophagy in VSMCs, and the inhibition of autophagy could protect VSMCs against oxidative stress-mediated cell death. Meanwhile, PARP-1 could also be activated by H2O2. Additionally, we analysed the regulatory role of PARP-1 in oxidative stress-mediated autophagy and found that PARP-1 was a novel factor involved in the H2O2-induced autophagy via the AMPK-mTOR pathway. Finally, PARP-1 inhibition protected VSMCs against caspase-dependent apoptosis. These data suggested that PARP-1 played a critical role in H2O2-mediated autophagy and both of them were involved in apoptosis of VSMCs.
Keywords
Funding
This study was supported by the Key Laboratory of Myocardial Ischemia, Harbin Medical University, Chinese Ministry of Education (Grant No. KF201511).
References
Copyright
This is an open-access article distributed under the terms of the Creative Commons Attribution License.