Fol. Biol. 2018, 64, 103-111

https://doi.org/10.14712/fb2018064030103

PARP-1 Involvement in Autophagy and Their Roles in Apoptosis of Vascular Smooth Muscle Cells under Oxidative Stress

Y. Y. Meng1, C. W. Wu1, B. Yu2,3, H. Li4, M. Chen5, Guoxian Qi5

1Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
2Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
3The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
4Department of Cardiology, No.1 Central Hospital of Baoding, Baoding, Hebei Province, China
5Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China

Received April 2018
Accepted July 2018

References

1. Alers, S., Loffler, A. S., Wesselborg, S., Stork, B. (2012) Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol. Cell. Biol. 32, 2-11. <https://doi.org/10.1128/MCB.06159-11>
2. Chen, Z. T., Zhao, W., Qu, S., Li, L., Lu, X. D., Su, F., Liang, Z. G., Guo, S. Y., Zhu, X. D. (2015) PARP-1 promotes autophagy via the AMPK/mTOR pathway in CNE-2 human nasopharyngeal carcinoma cells following ionizing radiation, while inhibition of autophagy contributes to the radiation sensitization of CNE-2 cells. Mol. Med. Rep. 12, 1868-1876. <https://doi.org/10.3892/mmr.2015.3604>
3. David, K. K., Andrabi, S. A., Dawson, T. M., Dawson, V. L. (2009) Parthanatos, a messenger of death. Front. Biosci. (Landmark Ed). 14, 1116-1128. <https://doi.org/10.2741/3297>
4. Ding, Z., Wang, X., Schnackenberg, L., Khaidakov, M., Liu, S., Singla, S., Dai, Y., Mehta, J. L. (2013) Regulation of autophagy and apoptosis in response to ox-LDL in vascular smooth muscle cells, and the modulatory effects of the microRNA hsa-let-7 g. Int. J. Cardiol. 168, 1378-1385. <https://doi.org/10.1016/j.ijcard.2012.12.045>
5. Fatokun, A. A., Dawson, V. L., Dawson, T. M. (2014) Parthanatos: mitochondrial-linked mechanisms and therapeutic opportunities. Br. J. Pharmacol. 171, 2000-2016. <https://doi.org/10.1111/bph.12416>
6. Gomez-Santos, C., Ferrer, I., Santidrian, A. F., Barrachina, M., Gil, J., Ambrosio, S. (2003) Dopamine induces autophagic cell death and α-synuclein increase in human neuroblastoma SH-SY5Y cells. J. Neurosci. Res. 73, 341-350. <https://doi.org/10.1002/jnr.10663>
7. Grootaert, M. O., da Costa Martins, P. A., Bitsch, N., Pintelon, I., De Meyer, G. R., Martinet, W., Schrijvers, D. M. (2015) Defective autophagy in vascular smooth muscle cells accelerates senescence and promotes neointima formation and atherogenesis. Autophagy 11, 2014-2032. <https://doi.org/10.1080/15548627.2015.1096485>
8. Ha, H. C., Snyder, S. H. (1999) Poly(ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion. Proc. Natl. Acad. Sci. USA 96, 13978-13982. <https://doi.org/10.1073/pnas.96.24.13978>
9. Haberzettl, P., Hill, B. G. (2013) Oxidized lipids activate autophagy in a JNK-dependent manner by stimulating the endoplasmic reticulum stress response. Redox Biol. 1, 56-64. <https://doi.org/10.1016/j.redox.2012.10.003>
10. Hans, C. P., Zerfaoui, M., Naura, A. S., Catling, A., Boulares, A. H. (2008) Differential effects of PARP inhibition on vascular cell survival and ACAT-1 expression favouring atherosclerotic plaque stability. Cardiovasc. Res. 78, 429-439. <https://doi.org/10.1093/cvr/cvn018>
11. He, C., Zhu, H., Zhang, W., Okon, I., Wang, Q., Li, H., Le, Y. Z., Xie, Z. (2013) 7-Ketocholesterol induces autophagy in vascular smooth muscle cells through Nox4 and Atg4B. Am. J. Pathol. 183, 626-637. <https://doi.org/10.1016/j.ajpath.2013.04.028>
12. Hill, B. G., Haberzettl, P., Ahmed, Y., Srivastava, S., Bhatnagar, A. (2008) Unsaturated lipid peroxidation-derived aldehydes activate autophagy in vascular smooth-muscle cells. Biochem. J. 410, 525-534. <https://doi.org/10.1042/BJ20071063>
13. Huang, Q., Wu, Y. T., Tan, H. L., Ong, C. N., Shen, H. M. (2009) A novel function of poly(ADP-ribose) polymerase- 1 in modulation of autophagy and necrosis under oxidative stress. Cell Death Differ. 16, 264-277. <https://doi.org/10.1038/cdd.2008.151>
14. Ibe, J. C., Zhou, Q., Chen, T., Tang, H., Yuan, J. X., Raj, J. U., Zhou, G. (2013) Adenosine monophosphate-activated protein kinase is required for pulmonary artery smooth muscle cell survival and the development of hypoxic pulmonary hypertension. Am. J. Respir. Cell Mol. Biol. 49, 609-618. <https://doi.org/10.1165/rcmb.2012-0446OC>
15. Jeon, S. M. (2016) Regulation and function of AMPK in physiology and diseases. Exp. Mol. Med. 48, e245. <https://doi.org/10.1038/emm.2016.81>
16. Kroemer, G., Marino, G., Levine, B. (2010) Autophagy and the integrated stress response. Mol. Cell 40, 280-293. <https://doi.org/10.1016/j.molcel.2010.09.023>
17. Langelier, M. F., Planck, J. L., Roy, S., Pascal, J. M. (2012) Structural basis for DNA damage-dependent poly(ADP-ribosyl) ation by human PARP-1. Science 336, 728-732. <https://doi.org/10.1126/science.1216338>
18. Lee, J., Giordano, S., Zhang, J. (2012) Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem. J. 441, 523-540. <https://doi.org/10.1042/BJ20111451>
19. Li, G. H., Lin, X. L., Zhang, H., Li, S., He, X. L., Zhang, K., Peng, J., Tang, Y. L., Zeng, J. F., Zhao, Y., Ma, X. F., Lei, J. J., Wang, R., Wei, D. H., Jiang, Z. S., Wang, Z. (2015) Ox- Lp(a) transiently induces HUVEC autophagy via an ROSdependent PAPR-1-LKB1-AMPK-mTOR pathway. Atherosclerosis 243, 223-235. <https://doi.org/10.1016/j.atherosclerosis.2015.09.020>
20. Liao, X., Sluimer, J. C., Wang, Y., Subramanian, M., Brown, K., Pattison, J. S., Robbins, J., Martinez, J., Tabas, I. (2012) Macrophage autophagy plays a protective role in advanced atherosclerosis. Cell Metab. 15, 545-553. <https://doi.org/10.1016/j.cmet.2012.01.022>
21. Martinet, W., De Meyer, G. R. (2009) Autophagy in atherosclerosis: a cell survival and death phenomenon with therapeutic potential. Circ. Res. 104, 304-317. <https://doi.org/10.1161/CIRCRESAHA.108.188318>
22. Mizushima, N., Yamamoto, A., Matsui, M., Yoshimori, T., Ohsumi, Y. (2004) In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol. Biol. Cell 15, 1101-1111. <https://doi.org/10.1091/mbc.e03-09-0704>
23. Mizushima, N., Komatsu, M. (2011) Autophagy: renovation of cells and tissues. Cell 147, 728-741. <https://doi.org/10.1016/j.cell.2011.10.026>
24. Munoz-Gamez, J. A., Rodriguez-Vargas, J. M., Quiles-Perez, R., Aguilar-Quesada, R., Martin-Oliva, D., de Murcia, G., Menissier de Murcia, J., Almendros, A., Ruiz de Almodovar, M., Oliver, F. J. (2009) PARP-1 is involved in autophagy induced by DNA damage. Autophagy 5, 61-74. <https://doi.org/10.4161/auto.5.1.7272>
25. Pacher, P., Szabo, C. (2007) Role of poly(ADP-ribose) polymerase 1 (PARP-1) in cardiovascular diseases: the therapeutic potential of PARP inhibitors. Cardiovasc. Drug Rev. 25, 235-260. <https://doi.org/10.1111/j.1527-3466.2007.00018.x>
26. Radovits, T., Lin, L. N., Zotkina, J., Gero, D., Szabo, C., Karck, M., Szabo, G. (2007) Poly(ADP-ribose) polymerase inhibition improves endothelial dysfunction induced by reactive oxidant hydrogen peroxide in vitro. Eur. J. Pharmacol. 564, 158-166. <https://doi.org/10.1016/j.ejphar.2007.02.060>
27. Scherz-Shouval, R., Shvets, E., Fass, E., Shorer, H., Gil, L., Elazar, Z. (2007) Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J. 26, 1749-1760. <https://doi.org/10.1038/sj.emboj.7601623>
28. Shintani, T., Klionsky, D. J. (2004) Autophagy in health and disease: a double-edged sword. Science 306, 990-995. <https://doi.org/10.1126/science.1099993>
29. Stocker, R., Keaney, J. F., Jr. (2004) Role of oxidative modifications in atherosclerosis. Physiol. Rev. 84, 1381-1478. <https://doi.org/10.1152/physrev.00047.2003>
30. Szabo, C., Zingarelli, B., O’Connor, M., Salzman, A. L. (1996) DNA strand breakage, activation of poly (ADP-ribose) synthetase, and cellular energy depletion are involved in the cytotoxicity of macrophages and smooth muscle cells exposed to peroxynitrite. Proc. Natl. Acad. Sci. USA 93, 1753-1758. <https://doi.org/10.1073/pnas.93.5.1753>
31. Wang, Y., Kim, N. S., Haince, J. F., Kang, H. C., David, K. K., Andrabi, S. A., Poirier, G. G., Dawson, V. L., Dawson, T. M. (2011) Poly(ADP-ribose) (PAR) binding to apoptosisinducing factor is critical for PAR polymerase-1-dependent cell death (parthanatos). Sci. Signal. 4, ra20.
32. Xu, K., Yang, Y., Yan, M., Zhan, J., Fu, X., Zheng, X. (2010) Autophagy plays a protective role in free cholesterol overload- induced death of smooth muscle cells. J. Lipid Res. 51, 2581-2590. <https://doi.org/10.1194/jlr.M005702>
33. Xu, S., Bai, P., Little, P. J., Liu, P. (2014) Poly(ADP-ribose) polymerase 1 (PARP1) in atherosclerosis: from molecular mechanisms to therapeutic implications. Med. Res. Rev. 34, 644-675. <https://doi.org/10.1002/med.21300>
34. Zheng, Y. H., Tian, C., Meng, Y., Qin, Y. W., Du, Y. H., Du, J., Li, H. H. (2012) Osteopontin stimulates autophagy via integrin/CD44 and p38 MAPK signaling pathways in vascular smooth muscle cells. J. Cell. Physiol. 227, 127-135. <https://doi.org/10.1002/jcp.22709>
35. Zhou, J., Ng, S., Huang, Q., Wu, Y. T., Li, Z., Yao, S. Q., Shen, H. M. (2013) AMPK mediates a pro-survival autophagy downstream of PARP-1 activation in response to DNA alkylating agents. FEBS Lett. 587, 170-177. <https://doi.org/10.1016/j.febslet.2012.11.018>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Submissions

Archive