Fol. Biol. 2018, 64, 84-96

https://doi.org/10.14712/fb2018064030084

Multielemental Chemical Analysis of Elements in Mandibular Bone and Teeth in the Rat

Ivo Němec1, V. Smrčka2, M. Mahaljevič3, J. Mazánek4, J. Pokorný5

1Department of Otorhinolaryngology and Maxillofacial Surgery, Third Faculty of Medicine of Charles University and the Military University Hospital Prague, Czech Republic
2Institute for History of Medicine and Foreign Languages, First Faculty of Medicine, Charles University, and Department of Plastic Surgery, First Faculty of Medicine, Charles University and Na Bulovce Hospital, Czech Republic
3Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Czech Republic
4Department of Stomatology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
5Institute of Physiology, First Faculty of Medicine, Charles University, Czech Republic

Received November 2017
Accepted June 2018

References

1. Aschner, J. L., Aschner, M. (2005) Nutritional aspects of manganese homeostasis. Mol. Aspects Med. 26, 353-362. <https://doi.org/10.1016/j.mam.2005.07.003>
2. Brewer, G. J. (1995) Interactions of zinc and molybdenum with copper in therapy of Wilson’s disease. Nutrition 11(Suppl 1), 114-116.
3. Brewer, G. J. (2009) Zinc and tetrathiomolybdate for the treatment of Wilson’s disease and the potential efficacy of anticopper therapy in a wide variety of diseases. Metallomics 1, 199-206. <https://doi.org/10.1039/b901614g>
4. Boivin, G., Meunier, P. J. (2003) The mineralization of bone tissue: a forgotten dimension in osteoporosis research. Osteoporos. Int. 14 (Suppl 3), S19-24. <https://doi.org/10.1007/s00198-002-1347-2>
5. Cianferotti, L., D’Asta, F., Brandi, M. L. (2013) A review on strontium ranelate long-term antifracture efficacy in the treatment of postmenopausal osteoporosis. Ther. Adv. Musculoskelet. Dis. 5, 127-139. <https://doi.org/10.1177/1759720X13483187>
6. Curzon, M. E. J., Cutress, T. W. (1983) Trace Elements and Dental Disease. John Wright PSG Inc., Boston.
7. de Jong, W. C., van Ruijven, L. J., Brugman, P., Langenbach, G. E. (2013) Variation of the mineral density in cortical bone may serve to keep strain amplitudes within a physiological range. Bone 55, 391-399. <https://doi.org/10.1016/j.bone.2013.04.026>
8. Dermience, M., Lognay, G., Mathieu, F., Goyens, P. (2015) Effects of thirty elements on bone metabolism. J. Trace Elem. Med. Biol. 32, 86-106. <https://doi.org/10.1016/j.jtemb.2015.06.005>
9. Fischer, A., Wiechuła, D., Postek-Stefańska, L., Kwapuliński, J. (2009) Concentrations of metals in maxilla and mandible deciduous and permanent human teeth. Biol. Trace Elem. Res. 132, 19-26. <https://doi.org/10.1007/s12011-009-8383-0>
10. Fischer, A., Wiechuła, D., Przybyła-Misztela, C. (2013) Changes of concentrations of elements in deciduous teeth with age. Biol. Trace Elem. Res. 154, 427-432. <https://doi.org/10.1007/s12011-013-9744-2>
11. Fischer, A., Malara, P., Wiechuła, D. (2014) The study of barium concentration in deciduous teeth, impacted teeth, and facial bones of Polish residents. Biol. Trace Elem. Res. 161, 32-37. <https://doi.org/10.1007/s12011-014-0061-1>
12. Ghadimi, E., Eimar, H., Marelli, B., Nazhat, S. N., Asgharian, M., Vali, H., Tamimi, F. (2013) Trace elements can influence the physical properties of tooth enamel. Springerplus 2, 499. <https://doi.org/10.1186/2193-1801-2-499>
13. Henrotin, Y., Labasse, A., Zheng, S. X., Galais, P., Tsouderos, Y., Crielaard, J. M., Reginster, J. Y. (2001) Strontium ranelate increases cartilage matrix formation. J. Bone Miner. Res. 16, 299-308. <https://doi.org/10.1359/jbmr.2001.16.2.299>
14. Hichijo, N., Tanaka, E., Kawai, N., van Ruijven, L. J., Langenbach, G. E. (2015) Effects of decreased occlusal loading during growth on the mandibular bone characteristics. PLoS One 10, e0129290. <https://doi.org/10.1371/journal.pone.0129290>
15. Hirayama, M., Iijima, S., Iwashita, M., Akiyama, S., Takaku, Y., Yamazaki, M., Omori, T., Yumoto, S., Shimamura T. (2011) Aging effects of major and trace elements in rat bones and their mutual correlations. J. Trace Elem. Med. Biol. 25, 73-84. <https://doi.org/10.1016/j.jtemb.2011.02.002>
16. Katić, V., Vujicić, G., Ivanković, D., Stavljenić, A., Vukicević, S. (1991) Distribution of structural and trace elements in human temporal bone. Biol. Trace Elem. Res. 29, 35-43. <https://doi.org/10.1007/BF03032672>
17. Lane, D. W., Peach, D. F. (1997) Some observations on the trace element concentrations in human dental enamel. Biol. Trace Elem. Res. 60, 1-11. <https://doi.org/10.1007/BF02783305>
18. Lanocha, N., Kalisinska, E., Kosik-Bogacka, D. I., Budis, H., Sokolowski, S., Bohatyrewicz, A. (2012) Concentrations of trace elements in bones of the hip joint from patients after hip replacement surgery. J. Trace Elem. Med. Biol. 26, 20-25. <https://doi.org/10.1016/j.jtemb.2011.11.006>
19. Maciejewska, K., Drzazga, Z., Kaszuba, M. (2014) Role of trace elements (Zn, Sr, Fe) in bone development: energy dispersive X-ray fluorescence study of rat bone and tooth tissue. Biofactors 40, 425-435. <https://doi.org/10.1002/biof.1163>
20. Maki, K., Nishioka, T., Nishida, I., Ushijima, S., Kimura, M. (2002) Effect of zinc on rat mandibles during growth. Am. J. Orthod. Dentofacial. Orthop. 122, 410-413. <https://doi.org/10.1067/mod.2002.126152>
21. Meloun, M., Hill, M., Militky, J., Kupka, K. (2000) Transformation in the PC-aided biochemical data analysis. Clin. Chem. Lab. Med. 38, 553-559. <https://doi.org/10.1515/CCLM.2000.081>
22. Meloun, M., Militky, J., Hill, M., Brereton, R. G. (2002) Crucial problems in regression modelling and their solutions. Analyst 127, 433-450. <https://doi.org/10.1039/b110779h>
23. Meloun, M., Hill, M., Militky, J., Vrbikova, J., Stanicka, S., Skrha, J. (2004) New methodology of influential point detection in regression model building for the prediction of metabolic clearance rate of glucose. Clin. Chem. Lab. Med. 42, 311-322. <https://doi.org/10.1515/CCLM.2004.057>
24. Oliveira, J. P., Querido, W., Caldas, R. J., Campos, A. P., Abraçado, L. G., Farina, M. (2012) Strontium is incorporated in different levels into bones and teeth of rats treated with strontium ranelate. Calcif. Tissue Int. 91, 186-195. <https://doi.org/10.1007/s00223-012-9625-2>
25. Parelman, M., Stoecker, B., Baker, A., Medeiros, D. (2006) Iron restriction negatively affects bone in female rats and mineralization of hFOB osteoblast cells. Exp. Biol. Med. (Maywood) 231, 378-386. <https://doi.org/10.1177/153537020623100403>
26. Reitznerová, E., Amarasiriwardena, D., Kopcáková, M., Barnes, R. M. (2000) Determination of some trace elements in human tooth enamel. Fresenius J. Anal. Chem. 367, 748-754. <https://doi.org/10.1007/s002160000461>
27. Roczniak, W., Brodziak-Dopierała, B., Cipora, E., Jakóbik- Kolon, A., Kluczka, J., Babuśka-Roczniak, M. (2017) Factors that affect the content of cadmium, nickel, copper and zinc in tissues of the knee joint. Biol. Trace Elem. Res. 178, 201-209. <https://doi.org/10.1007/s12011-016-0927-5>
28. Rude, R. K., Singer, F. R., Gruber, H. E. (2009) Skeletal and hormonal effects of magnesium deficiency. J. Am. Coll. Nutr. 28, 131-141. <https://doi.org/10.1080/07315724.2009.10719764>
29. Sarko, J. (2005) Bone and mineral metabolism. Emerg. Med. Clin. North. Am. 23, 703-721, viii. <https://doi.org/10.1016/j.emc.2005.03.017>
30. Schneiderka, P., Jirsa, M., Kazda, A., Kocna, P., Mašek, Z., Nekulová, M., Pick, P., Šebesta, I., Šimíčková, M., Štern, P., Zima, T. (2004) Chapters from Clinical Biochemistry (2nd edition). Karolinum Press, Charles University, Prague, Czech Republic (in Czech).
31. Smrčka, V. (2005) Trace Elements in Bone Tissue. Karolinum Press, Charles University, Prague, Czech Republic.
32. Tanaka, E., Sano, R., Kawai, N., Langenbach, G. E., Brugman, P., Tanne, K., van Eijden, T. M. (2007) Effect of food consistency on the degree of mineralization in the rat mandible. Ann. Biomed. Eng. 35, 1617-1621. <https://doi.org/10.1007/s10439-007-9330-x>
33. Vrbič, V., Štupar, J., Byrne, A. R. (1987) Trace element content of primary and permanent tooth enamel. Caries Res. 21, 37-39. <https://doi.org/10.1159/000261000>
34. Wang, L., Banu, J., McMahan, C. A., Kalu, D. N. (2001) Male rodent model of age-related bone loss in men. Bone 29, 141-148. <https://doi.org/10.1016/S8756-3282(01)00483-5>
35. WHO (1990) Environ Health Criteria 107.
36. Yamaguchi, M., Oishi, H., Suketa, Y. (1987) Stimulatory effect of zinc on bone formation in tissue culture. Biochem. Pharmacol. 36, 4007-4012. <https://doi.org/10.1016/0006-2952(87)90471-0>
37. Yamaguchi, M., Gao, Y. H., Ma, Z. J. (2000) Synergistic effect of genistein and zinc on bone components in the femoralmetaphyseal tissues of female rats. J. Bone Miner. Metab. 18, 77-83. <https://doi.org/10.1007/s007740050015>
38. Zaichick, V., Zaichick, S., Karandashev, V., Nosenko, S. (2009) The effect of age and gender on Al, B, Ba, Ca, Cu, Fe, K, Li, Mg, Mn, Na, P, S, Sr, V and Zn contents in rib bone of healthy humans. Biol. Trace Elem. Res. 129, 107-115. <https://doi.org/10.1007/s12011-008-8302-9>
39. Zaichick, S., Zaichick, V. (2010a) The effect of age and gender on 38 chemical element contents in human iliac crest investigated by instrumental neutron activation analysis. J. Trace Elem. Med. Biol. 24, 1-6. <https://doi.org/10.1016/j.jtemb.2009.07.002>
40. Zaichick, S., Zaichick, V. (2010b) The effect of age and gender on 38 chemical element contents in human femoral neck investigated by instrumental neutron activation analysis. Biol. Trace Elem. Res. 137, 1-12. <https://doi.org/10.1007/s12011-009-8554-z>
41. Zaichick, S., Zaichick, V., Karandashev, V. K., Moskvina, I. R. (2011) The effect of age and gender on 59 trace-element contents in human rib bone investigated by inductively coupled plasma mass spectrometry. Biol. Trace Elem. Res. 143, 41-57. <https://doi.org/10.1007/s12011-010-8837-4>
42. Žofková, I. (2012) Osteology and Calcium-Phosphate Metabolism, Grada Publishing, a. s, Prague, Czech Republic. (in Czech)
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Submissions

Archive