Fol. Biol. 2018, 64, 113-124

https://doi.org/10.14712/fb2018064040113

Cell Membrane-Derived Microvesicles in Systemic Inflammatory Response

M. Šibíková1, Jan Živný2, Jan Janota2,3

1Third Faculty of Medicine, Charles University, Prague, Czech Republic
2Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
3Department of Neonatology, Thomayer Hospital, Prague, Czech Republic

Received September 2018
Accepted September 2018

References

1. Amabile, N., Guerin, A. P., Tedgui, A., Boulanger, C. M., London, G. M. (2012) Predictive value of circulating endothelial microparticles for cardiovascular mortality in end-stage renal failure: a pilot study. Nephrol. Dial. Transplant. 27, 1873-1880. <https://doi.org/10.1093/ndt/gfr573>
2. Angus, D. C., Van der Poll, T. (2013) Severe sepsis and septic shock. N. Engl. J. Med. 369, 840-851. <https://doi.org/10.1056/NEJMra1208623>
3. Annane, D., Bellissant, E., Cavaillon, J. M. (2005) Septic shock. Lancet 365, 63-78. <https://doi.org/10.1016/S0140-6736(04)17667-8>
4. Aras, O., Shet, A., Bach, R. R., Hysjulien, J. L., Slungaard, A., Hebbel, R. P., Escolar, G., Jilma, B., Key, N. S. (2004) Induction of microparticle- and cell-associated intravascular tissue factor in human endotoxemia. Blood 103, 4545-4553. <https://doi.org/10.1182/blood-2003-03-0713>
5. Arderiu, G., Peña, E., Badimon, L. (2015) Angiogenic microvascular endothelial cells release microparticles rich in tissue factor that promotes postischemic collateral vessel formation. Arterioscler. Thromb. Vasc. Biol. 35, 348-357. <https://doi.org/10.1161/ATVBAHA.114.303927>
6. Augustine, D., Ayers, L. V., Lima, E., Newton, L., Lewandowski, A. J., Davis, E. F., Ferry, B., Leeson, P. (2014) Dynamic release and clearance of circulating microparticles during cardiac stress. Circ. Res. 114, 109-113. <https://doi.org/10.1161/CIRCRESAHA.114.301904>
7. Aupeix, K., Hugel, B., Martin, T., Bischoff, P., Lill, H., Pasquali, J. L., Freyssinet, J. M. (1997) The significance of shed membrane particles during programmed cell death in vitro, and in vivo, in HIV-1 infection. J. Clin. Invest. 99, 1546-1554. <https://doi.org/10.1172/JCI119317>
8. Bachelier, K., Biehl, S., Schwarz, V., Kindermann, I., Kandolf, R., Sauter, M., Ukena, C., Yilmaz, A., Sliwa, K., Bock, C. T., Klingel, K., Böhm, M. (2017) Parvovirus B19- induced vascular damage in the heart is associated with elevated circulating endothelial microparticles. PLoS One 12, e0176311. <https://doi.org/10.1371/journal.pone.0176311>
9. Balk, R. A. (2014) Systemic inflammatory response syndrome (SIRS): where did it come from and is it still relevant today? Virulence 5, 20-26. <https://doi.org/10.4161/viru.27135>
10. Barry, O. P., Kazanietz, M. G., Praticò, D., FitzGerald, G. A. (1999) Arachidonic acid in platelet microparticles up-regulates cyclooxygenase-2-dependent prostaglandin formation via a protein kinase C/mitogen-activated protein kinase- dependent pathway. J. Biol. Chem. 274, 7545-7556. <https://doi.org/10.1074/jbc.274.11.7545>
11. van Beers, E. J., Schaap, M. C., Berckmans, R. J., Nieuwland, R., Sturk, A., Van Doormaal, F. F, Meijers, J. C., Biemond, B. J., CURAMA study group. (2009) Circulating erythrocyte-derived microparticles are associated with coagulation activation in sickle cell disease. Haematologica 94, 1513-1519. <https://doi.org/10.3324/haematol.2009.008938>
12. Bernal-Mizrachi, L., Jy, W., Jimenez, J. J., Pastor, J., Mauro, L. M., Horstman, L. L., de Marchena, E., Ahn, Y. S. (2003) High levels of circulating endothelial microparticles in patients with acute coronary syndromes. Am. Heart J. 145, 962-970. <https://doi.org/10.1016/S0002-8703(03)00103-0>
13. Blumberg, N., Gettings, K. F., Turner, C., Heal, J. M., Phipps, R. P. (2006) An association of soluble CD40 ligand (CD154) with adverse reactions to platelet transfusions. Transfusion 46, 1813-1821. <https://doi.org/10.1111/j.1537-2995.2006.00979.x>
14. Bone, R. C., Balk, R. A., Cerra, F. B., Dellinger, R. P., Fein, A. M., Knaus, W. A., Schein, R. M., Sibbald, W. J. (1992) Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Chest 101, 1644-1655. <https://doi.org/10.1378/chest.101.6.1644>
15. Breen, K. A., Sanchez, K., Kirkman, N., Seed, P. T., Parmar, K., Moore, G. W., Hunt, B. J. (2015) Endothelial and platelet microparticles in patients with antiphospholipid antibodies. Thromb. Res. 135, 368-374. <https://doi.org/10.1016/j.thromres.2014.11.027>
16. Brown, G. T., McIntyre, T. M. (2011) Lipopolysaccharide signaling without a nucleus: kinase cascades stimulate platelet shedding of proinflammatory IL-1β-rich microparticles. J. Immunol. 186, 5489-5496. <https://doi.org/10.4049/jimmunol.1001623>
17. Burger, D., Schock, S., Thompson, C. S., Montezano, A. C., Hakin, A. M., Touyz, R. M. (2013) Microparticles: biomarkers and beyond. Clin. Sci. (Lond.) 124, 423-441. <https://doi.org/10.1042/CS20120309>
18. Burnouf, T., Chou, M. L., Goubran, H., Cognasse, F., Garraud, O., Seghatchian, J. (2015) An overview of the role of microparticles/microvesicles in blood components. Transf. Apher. Sci. 53, 137-145. <https://doi.org/10.1016/j.transci.2015.10.010>
19. Cavaillon, J. M., Adrie, C. (2009) Sepsis and Non-infectious Systemic Inflammation. Wiley-VCH Verlag GmbH, Weinheim, Germany.
20. Chaturvedi, S., Cockrell, E., Espinola, R., Hsi, L., Fulton, S., Khan, M., Li, L., Fonseca, F., Kundu, S., McCrae, K. R. (2015) Circulating microparticles in patients with antiphospholipid antibodies: characterization and associations. Thromb. Res. 135, 102-108. <https://doi.org/10.1016/j.thromres.2014.11.011>
21. Chironi, G. N., Boulanger, C. M., Simon, A., Dignat-George, F., Freyssinet, J. M., Tedgui, A. (2009) Endothelial microparticles in diseases. Cell Tissue Res. 335, 43-51. <https://doi.org/10.1007/s00441-008-0710-9>
22. Cloutier, N., Tan, S., Boudreau, L. H., Cramb, C., Subbaiah, R., Lahey, L., Albert, A., Shnayder, R., Gobezie, R., Nigrovic, P. A., Farndale, R. W., Robinson, W. H., Brisson, A., Lee, D. M., Boilard, E. (2013) The exposure of autoantigens by microparticles underlies the formation of potent inflammatory components: the microparticles associated imine complexes. EMBO Mol. Med. 5, 235-249. <https://doi.org/10.1002/emmm.201201846>
23. Cognasse, F., Hamzeh-Cognasse, H., Laradi, S., Chou, M. L., Seghatchian, J., Burnouf, T., Boulanger, C., Garraud, O., Amabile, N. (2015) The role of microparticles in inflammation and transfusion: A concise review. Transfus. Apher. Sci. 53, 159-167. <https://doi.org/10.1016/j.transci.2015.10.013>
24. Curry, N., Raja, A., Beavis, J., Stanworth, S., Harrison, P. (2014) Levels of procoagulant microvesicles are elevated after traumatic injury and platelet microvesicles are negatively correlated with mortality. J. Extracell. Vesicles 3, 25625. <https://doi.org/10.3402/jev.v3.25625>
25. Dasgupta, S. K., Le, A., Chavakis, T., Rumbaut, R. E., Thiagarajan, P. (2012) Developmental endothelial locus-1 (Del-1) mediates clearance of platelet microparticles by the endothelium. Circulation 125, 1664-1672. <https://doi.org/10.1161/CIRCULATIONAHA.111.068833>
26. Davis, A. L., Carcillo, J. A., Aneja, R. K., Deymann, A. J., Lin, J. C., Nguyen, T. C., Okhuysen-Cawley, R. S., Relvas, M. S., Rozenfeld, R. A., Skippen, P. W., Stojadinovic, B. J., Williams, E. A., Yeh, T. S., Balamuth, F., Brierley, J., de Caen, A. R., Cheifetz, I. M., Choong, K., Conway, E., Cornell, T., Doctor, A., Dugas, M. A., Feldman, J. D., Fitzgerald, J. C., Flori, H. R., Fortenberry, J. D., Graciano, A. L., Greenwald, B. M., Hall, M. W., Han, Y. Y., Hernan, L. J., Irazuzta, J. E., Iselin, E., Van der Jagt, E. W., Jeffries, H. E., Kache, S., Katyal, C., Kissoon, N. T., Kon, A. A., Kutko, M. C., MacLaren, G., Maul, T., Mehta, R., Odetola, F., Parbuoni, K., Paul, R., Peters, M. J., Ranjit, S., Reuter-Rice, K. E., Schnitzler, E. J., Scott, H. F., Torres, A., Weingarten- Abrams, J., Weiss, S. L., Zimmerman, J. J., Zuckerberg, A. L. (2017) American College of Critical Care Medicine clinical practice parameters for hemodynamic support of pediatric and neonatal septic shock. Crit. Care Med. 45, 1061-1093. <https://doi.org/10.1097/CCM.0000000000002425>
27. Delabranche, X., Boisramé-Helms, J., Asfar, P., Berger, A., Mootien, Y., Lavigne, T., Grunebaum, L., Lanza, F., Gachet, C., Freyssinet, J. M., Toti, F., Meziani, F. (2013) Microparticles are new biomarkers of septic shock-induced disseminated intravascular coagulopathy. Intensive Care Med. 39, 1695-1703. <https://doi.org/10.1007/s00134-013-2993-x>
28. Deng, F., Wang, S., Cai, S., Hu, Z., Xu, R., Wang, J., Feng, D., Zhang, L. (2017) Inhibition of caveolae contributes to oropofol preconditioning-suppressed microvesicles release and cell injury by hypoxia-reoxygenation. Oxid. Med. Cell. Longev. 2017, 3542149. <https://doi.org/10.1155/2017/3542149>
29. Deutschmann, A., Schlagenhauf, A., Leschnik, B., Hoffmann, K. M., Hauer, A., Muntean, W. (2013) Increased procoagulant function of microparticles in pediatric inflammatory bowel disease: role in increased thrombin generation. J. Pediatr. Gastroenterol. Nutr. 56, 401-407. <https://doi.org/10.1097/MPG.0b013e31827daf72>
30. Distler, J. H., Jungel, A., Huber, L. C., Seemayer, C. A., Reich, C. F., Gay, R. E., Michel, B. A., Fontana, A., Gay, S., Pisetsky, D. S., Distler, O. (2005) The induction of matrix metalloproteinase and cytokine expression in synovial fibroblasts stimulated with immune cell microparticles. Proc. Natl. Acad. Sci. USA 102, 2892-2897. <https://doi.org/10.1073/pnas.0409781102>
31. Dragovic, R .A., Gardiner, C., Brooks, A. S., Tannetta, D. S., Ferguson, D. J., Hole, P., Carr, B., Redman, C. W., Harris, A. L., Dobson, P. J., Harrison, P., Sargent, I. L. (2011) Sizing and phenotyping of cellular vesicles using Nanoparticle Tracking Analysis. Nanomedicine 7, 780-788. <https://doi.org/10.1016/j.nano.2011.04.003>
32. Faille, D., El-Assaad, F., Mitchell, A. J., Alessi, M. C., Chimini, G., Fusai, T., Grau G. E., Combes V. (2012) Endocytosis and intracellular processing of platelet microparticles by brain endothelial cells. J. Cell. Mol. Med. 16, 1731-1738. <https://doi.org/10.1111/j.1582-4934.2011.01434.x>
33. Flammer, A. J., Anderson, T., Celermajer, D. S., Creager, M. A., Deanfield, J., Ganz, P., Hamburg, N. M., Lüscher, T. F., Shechter, M., Taddei, S., Vita, J. A., Lerman, A. (2012) The assessment of endothelial function: from research into clinical practice. Circulation 126, 753-767. <https://doi.org/10.1161/CIRCULATIONAHA.112.093245>
34. Forest, A., Pautas, E., Ray, P., Bonnet, D., Verny, M., Amabile, N., Boulanger, C., Riou, B, Tedgui, A., Mallat, Z., Boddaert J. (2010) Circulating microparticles and procoagulant activity in elderly patients. J. Gerontol. A Biol. Sci. Med. 65, 414-420. <https://doi.org/10.1093/gerona/glp187>
35. Fujimi, S., Ogura, H., Tanaka, H., Koh, T., Hosotsubo, H., Nakamori, Y., Kuwagata, Y., Shimazu, T., Sugimoto, H. (2002) Activated polymorphonuclear leukocytes enhance production of leukocyte microparticles with increased adhesion molecules in patients with sepsis. J. Trauma 52, 443-448.
36. Fujita, Y., Kuwano, K., Ochiya, T., Takeshita, F. (2014) The impact of extracellular vesicle-encapsulated circulating micro RNAs in lung cancer research. Biomed. Res. Int. 2014, 486413. <https://doi.org/10.1155/2014/486413>
37. Gelderman, M. P., Simak, J. (2008) Flow cytometric analysis of cell membrane microparticles. Methods Mol. Biol. 484, 79-93. <https://doi.org/10.1007/978-1-59745-398-1_6>
38. Goris, R. J. (1996) MODS/SIRS: result of an overwhelming inflammatory response? World J. Surg. 20, 418-421. <https://doi.org/10.1007/s002689900066>
39. Gould, S. J., Raposo, G. (2013) As we wait: coping with an imperfect nomenclature for extracellular vesicles. J. Extracell. Vesicles 2, 20389. <https://doi.org/10.3402/jev.v2i0.20389>
40. Guervilly, C., Lacroix, R., Forel, J. M., Roch, A., Camoin-Jau, L., Papazian, L., Dignat-George, F. (2011) High levels of circulating leukocyte microparticles are associated with better outcome in acute respiratory distress syndrome. Crit. Care 15, R31. <https://doi.org/10.1186/cc9978>
41. Hong, Y., Eleftheriou, D., Hussain, A. A., Price-Kuehne, F. E., Savage, C. O., Jayne D., Little, M. A., Salama, A. D., Klein, N. J., Brogan, P. A. (2012) Anti-neutrophil cytoplasmic antibodies stimulate release of neutrophil microparticles. J. Am. Soc. Nephrol. 2, 49-62. <https://doi.org/10.1681/ASN.2011030298>
42. Inzhutova, A. I., Larionov, A. A., Petrova, M. M., Salmina, A. B. (2012) Theory of intercellular communication in the development of endothelilal dysfunction. Bull. Exp. Biol. Med. 153, 201-205. <https://doi.org/10.1007/s10517-012-1676-x>
43. Jansen, F., Yang, X., Hoyer, F. F., Paul, K., Heiermann, N., Becher, M. U., Abu, Hussein, N., Kebschull, M., Bedorf, J., Franklin, B. S., Latz, E., Nickenig, G., Werner N. (2012) Endothelial microparticle uptake in target cells is annexin I/phosphatidylserine receptor dependent and prevents apoptosis. Arterioscler. Thromb. Vasc. Biol. 32, 1925-1935. <https://doi.org/10.1161/ATVBAHA.112.253229>
44. Jimenez, J. J., Jy, W., Mauro, L. M., Horstman, L. L., Ahn, Y. S. (2001) Elevated endothelial microparticles in thrombotic thrombocytopenic purpura: findings from brain and renal microvascular cell culture and patients with active disease. Br. J. Haematol. 112, 81-90. <https://doi.org/10.1046/j.1365-2141.2001.02516.x>
45. de Jong, H. K., van der Poll, T., Wiersinga, W. J. (2010) The systemic pro-inflammatory response in sepsis. J. Innate Immun. 2, 422-430. <https://doi.org/10.1159/000316286>
46. Kalra, H., Simpson, R. J., Ji, H., Aikaa, E., Altevogt, P., Askenase, P., Bond, V. C., Borras, F. E., Breakefield, X., Budnik, V., Buzas, E., Camussi, G., Clayton, A. (2012) Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation. PLoS Biol. 10, e1001450. <https://doi.org/10.1371/journal.pbio.1001450>
47. Kambas, K., Chrysanthopoulou, A., Vassilopoulos, D., Apostolidou, E., Skendros, P., Girod, A., Arelaki, S., Froudarakis, M., Nakopoulou, L., Giatromanolaki, A., Sidiropoulos, P., Koffa, M., Boumpas, D. T., Ritis, K., Mitroulis, I. (2014) Tissue factor expression in neutrophil extracellular traps and neutrophil derived microparticles in antineutrophil cytoplasmic antibody associated vasculitis may promote thromboinflammation and the thrombophilic state associated with the disease. Ann. Rheum. Dis. 73, 1854-1863. <https://doi.org/10.1136/annrheumdis-2013-203430>
48. Khan, S. Y., Kelher, M. R., Heal, J. M., Blumberg, N., Boshkov, L. K., Phipps, R., Gettings, K. F., McLaughlin, N. J., Silliman, C. C. (2006) Soluble CD40 ligand accumulates in stored blood components, primes neutrophils through CD40, and is a potential cofactor in the development of transfusion- related acute lung injury. Blood 108, 2455-2462. <https://doi.org/10.1182/blood-2006-04-017251>
49. Kirkeboen, K. A., Strand, O. A. (1999) The role of nitric oxide in sepsis – an overview. Acta Anaesthesiol. Scand. 43, 275-288. <https://doi.org/10.1034/j.1399-6576.1999.430307.x>
50. Knijff-Dutmer, E. A., Koerts, J., Nieuwland, R., Kalsbeek- Batenburg, E. M., van de Laar, M. A. (2002) Elevated levels of platelet microparticles are associated with disease activity in rheumatoid arthritis. Arthritis Rheum. 46, 1498-1503. <https://doi.org/10.1002/art.10312>
51. Laher, I. (2011) Microparticles have a macro effect in sepsis. Crit. Care Med. 39, 1842-1843. <https://doi.org/10.1097/CCM.0b013e31821cb06d>
52. Larsen, F. F., Petersen, J. A. (2017) Novel biomarkers for sepsis: A narrative review. Eur. J. Intern. Med. 45, 46-50. <https://doi.org/10.1016/j.ejim.2017.09.030>
53. Lee, C. Y., Chen, P. Y., Huang, F. L., Lin, C. F. (2009) Microbiologic spectrum and susceptibility pattern of clinical isolates from the pediatric intensive care unit in a single medical center – 6 years’ experience. J. Microbiol. Immunol. Infect. 42, 160-165.
54. Leonetti, D., Reimund, J. M., Tesse, A., Viennot, S., Martinez, M. C., Bretagne, A. L., Andriantsitohaina, R. (2013) Circulating microparticles from Crohn’s disease patients cause endothelial and vascular dysfunctions. Plos One 8, e73088. <https://doi.org/10.1371/journal.pone.0073088>
55. Lia, G., Brunello, L., Bruno, S., Carpanetto, A., Omedè, P., Festuccia, M., Tosti, L., Maffini, E., Giaccone, L., Arpinati, M., Ciccone, G., Boccadoro, M., Evangelista, A., Camussi, G., Bruno, B. (2018) Extracellular vesicles as potential biomarkers of acute graft-vs-host disease. Leukemia 32, 765-773. <https://doi.org/10.1038/leu.2017.277>
56. Lucignano, B., Ranno, S., Liesenfeld, O., Pizzorno, B., Putignani, L., Bernaschi, P., Menichella, D. (2011) Multiplex PCR allows rapid and accurate diagnosis of bloodstream infections in newborns and children with suspected sepsis. J. Clin. Microbiol. 49, 2252-2258. <https://doi.org/10.1128/JCM.02460-10>
57. Marcos-Ramiro, B., Oliva-Nacarino, P., Serrano-Pertierra, E., Blanco-Gelaz, M. A., Weksler, B. B., Romero, I. A., Couraud, P. O., Tuñón, A., López-Larrea, C., Millán, J., Cernuda- Morollón, E. (2014) Microparticles in multiple sclerosis and clinically isolated syndrome: effect on endothelial barrier function. BMC Neurosci. 15, 110. <https://doi.org/10.1186/1471-2202-15-110>
58. Mastronardi, M. L., Mostefai, H. A., Meziani, F., Martínez, M. C., Asfar, P., Andriantsitohaina, R. (2011) Circulating microparticles from septic shock patients exert differential tissue expression of enzymes related to inflammation and oxidative stress. Crit. Care. Med. 39, 1739-1748. <https://doi.org/10.1097/CCM.0b013e3182190b4b>
59. Matsuda, N., Hattori, Y. (2006) Systemic inflammatory response syndrome (SIRS): molecular pathophysiology and gene therapy. J. Pharmacol. Sci. 101, 189-198. <https://doi.org/10.1254/jphs.CRJ06010X>
60. Morel, O., Toti, F., Morel, N., Freyssinet, J. M. (2009) Microparticles in endothelial cell and vascular homeostasis: are they really noxious? Haematologica 94, 313-317. <https://doi.org/10.3324/haematol.2008.003657>
61. Mortaza, S., Martinez, M. C., Baron-Menguy, C., Burban, M,. de la Bourdonnaye, M., Fizanne, L., Pierrot, M., Calès, P., Henrion, D., Andriantsitohaina, R., Mercat, A., Asfar, P., Meziani, F. (2009) Detrimental hemodynamic and inflammatory effects of microparticles originating from septic rats. Crit. Care Med. 37, 2045-2050. <https://doi.org/10.1097/CCM.0b013e3181a00629>
62. Mostefai, H. A., Meziani, F., Mastronardi, M. L., Agouni, A., Heymes, C., Sargentini, C., Asfar, P., Martinez, M. C., Andriantsitohaina, R. (2008) Circulating microparticles from patients with septic shock exert protective role in vascular function. Am. J. Respir. Crit. Care Med. 178, 1148-1155. <https://doi.org/10.1164/rccm.200712-1835OC>
63. Nielsen, C. T., Ostergaard, O., Stener, L., Iversen, L. V., Truedsson, L., Gullstrand, B., Jacobsen, S., Heegaard, N. H. (2012) Increased IgG on cell-derived plasma microparticles in systemic lupus erythematosus is associated with autoantibodies and complement activation. Arthritis Rheum. 64, 1227-1236. <https://doi.org/10.1002/art.34381>
64. Nieuwland, R., Berckmans, R. J., McGregor, S., Böing, A. N., Romijn, F. P., Westendorp, R. G., Hack, C. E., Sturk, A. (2000) Cellular origin and procoagulant properties of microparticles in meningococcal sepsis. Blood 95, 930-935. <https://doi.org/10.1182/blood.V95.3.930.003k46_930_935>
65. Nomura, S., Okamae, F., Abe, M., Hosokawa, M., Yamaoka, M., Ohtani, T., Onishi, S., Matsuzaki, T., Teraoka, A., Ishida, T., Fukuhara, S. (2000) Platelets expressing P-selectin and platelet-derived microparticles in stored platelet concentrates bind to PSGL-1 on filtrated leukocytes. Clin. Appl. Thromb. 6, 213-221. <https://doi.org/10.1177/107602960000600406>
66. Nomura, S., Shimizu, M. (2015) Clinical significance of procoagulant microparticles. J. Intensive Care 3, 2. <https://doi.org/10.1186/s40560-014-0066-z>
67. O’Dea, K. P., Porter, J. R., Tirlapur, N., Katbeh, U., Singh, S., Handy, J. M., Takata, M. (2016) Circulating microvesicles are elevated acutely following major burns injury and associated with clinical severity. PLoS One 11, e0167801. <https://doi.org/10.1371/journal.pone.0167801>
68. Ostergaard, O., Nielsen, C. T., Iversen, L. V., Tanassi, J. T., Knudsen, S., Jacobsen, S., Heegaard, H. H. (2013) Unique protein signature of circulating microparticles in systemic lupus erythematosus. Arthritis Rheum. 65, 2680-2690. <https://doi.org/10.1002/art.38065>
69. Park, M. S., Owen, B. A., Ballinger, B. A., Sarr, M. G., Schiller, H. J., Jenkins, D. H., Zietlow, S. P., Ereth, M. H., Owen, G. W., Heit, J. A. (2012) Quantification of hypercoagulable state after blunt trauma: microparticle and thrombin generation are increased relative to injury severity, while standard markers are not. Surgery 151, 831-836. <https://doi.org/10.1016/j.surg.2011.12.022>
70. Pittet, D., Rangel-Fausto, M. S., Li, N. (1995) Systemic inflammatory response syndrome, sepsis, severe sepsis and septic shock: incidence, morbidities and outcomes in surgical ICU patients. Int. Care Med. 21, 302-309. <https://doi.org/10.1007/BF01705408>
71. Rangel-Fausto, M. S., Pittet, D., Costigan, M. (1995) The natural history of the systemic inflammatory response syndrome (SIRS). A prospective study. JAMA 273, 117-123. <https://doi.org/10.1001/jama.1995.03520260039030>
72. Reid, V. L., Webster, N. R. (2012) Role of microparticles in sepsis. Br. J. Anaesth. 109, 503-513. <https://doi.org/10.1093/bja/aes321>
73. Robertson, C. M., Coopersmith, C. M. (2006) The systemic inflammatory response syndrome. Microbes Infect. 8, 1382-1389. <https://doi.org/10.1016/j.micinf.2005.12.016>
74. Sáenz-Cuesta, M., Irizar, H., Castillo-Triviño, T., Muñoz-Culla, M., Osorio-Querejeta, I., Prada, A., Sepúlveda, L., López-Mato, M. P., López de Munain, A., Comabella, M., Villar, L. M., Olascoaga, J., Otaegui, D. (2014) Circulating microparticles reflect treatment effects and clinical status in multiple sclerosis. Biomark. Med. 8, 653-661. <https://doi.org/10.2217/bmm.14.9>
75. Salvador, B., Arranz, A., Francisco, S., Córdoba, L., Punzón, C., Llamas, M. Á., Fresno, M. (2016) Modulation of endothelial function by Toll like receptors. Pharmacol. Res. 108, 46-56. <https://doi.org/10.1016/j.phrs.2016.03.038>
76. Sauaia, A., Moore, F. A., Moore, E. E. (2017) Postinjury inflammation and organ dysfunction. Crit. Care Clin. 33, 167-191. <https://doi.org/10.1016/j.ccc.2016.08.006>
77. Simak, J., Holada, K., Risitano, A. M., Zivny, J. H., Young, N. S., Vostal, J. G. (2004) Elevated circulating endothelial membrane microparticles in paroxysmal nocturnal haemoglobinuria. Br. J. Haematol. 125, 804–813. <https://doi.org/10.1111/j.1365-2141.2004.04974.x>
78. Simak, J., Gelderman, M. P., Yu, H., Wright, V., Baird, A. E. (2006) Circulating endothelilal microparticles in acute ischemic stroke: a link to severity, lesion volume and outcome. J. Tromb. Haemost. 4, 1296-1302. <https://doi.org/10.1111/j.1538-7836.2006.01911.x>
79. Singer, M., Deutschman, C. S., Seymour, C. W., Shankar-Hari, M., Annane, D., Bauer, M., Bellomo, R., Bernard, G. R., Chiche, J. D., Coopersmith, C. M., Hotchkiss, R. S., Levy, M., Marshall, J. C., Martin, G. S., Opal, S. M., Rubenfeld, G. D., van der Poll, T., Vincent, J. L., Angus, D. C. (2016) The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 315, 801-810. <https://doi.org/10.1001/jama.2016.0287>
80. Sinning, J. M., Losch, J., Walenta, K., Bohm, M., Nickenig, G., Werner, N. (2011) Circulating CD31+/Annexin V+ microparticles correlate with cardiovascular outcomes. Eur. Heart J. 32, 2034-2041. <https://doi.org/10.1093/eurheartj/ehq478>
81. Sitia, S., Tomasoni, L., Atzeni, F., Ambrosio, G., Cordiano, C., Catapano, A., Tramontana, S., Perticone, F., Naccarato, P. (2010) From endothelial dysfunction to atherosclerosis. Autoimmun. Rev. 9, 830-834. <https://doi.org/10.1016/j.autrev.2010.07.016>
82. Takeuchi, O., Akira, S. (2010) Pattern recognition receptors and inflammation. Cell 140, 805-820. <https://doi.org/10.1016/j.cell.2010.01.022>
83. Tang, A. H., Brunn, G. J., Cascalho, M., Platt, J. L. (2007) Pivotal advance: endogenous pathway to SIRS, sepsis, and related conditions. J. Leukoc. Biol. 82, 282-285. <https://doi.org/10.1189/jlb.1206752>
84. Thaler, J., Ay, C., Mackman, N., Bertina, R. M., Kaider, A., Marosi, C., Key, N. S., Barcel, D. A., Scheithauer, W., Kornek, G., Zielinski, C., Pabinger, I. (2012) Microparticleassociated tissue factor activity, venous thromboembolism and mortality in pancreatic, gastric, colorectal and brain cancer patients. J. Thromb. Haemost. 10, 1363-1370. <https://doi.org/10.1111/j.1538-7836.2012.04754.x>
85. Trzepizur, W., Martinez, M. C., Priou, P., Andriantsitohaina, R., Gagnadoux, F. (2014) Microparticles and vascular dysfunction in obstructive sleep apnoea. Eur. Respir. J. 44, 207-216. <https://doi.org/10.1183/09031936.00197413>
86. Vitkova, V., Panek, M., Janec, P., Sibikova, M., Vobruba, V., Haluzik, M., Zivny, J., Janota, J. (2018a) Endothelial microvesicles and soluble markers of endothelial injury in critically ill newborns. Mediators Inflamm. 2018, 1975056. <https://doi.org/10.1155/2018/1975056>
87. Vitkova, V., Zivny, J., Janota, J. (2018b) Endothelial cell-derived microvesicles: potential mediators and biomarkers of pathologic processes. Biomark. Med. 12, 161-175. <https://doi.org/10.2217/bmm-2017-0182>
88. Wu, Z. H., Ji, C. L., Li, H., Qiu, G. X., Gao, C. J., Weng, X. S. (2013) Membrane microparticles and diseases. Eur. Rev. Med. Pharmacol. Sci. 17, 2420-2427.
89. Xu, R., Greening, D. W., Zhu, H. J., Takahashi, N., Simpson, R. J. (2016) Extracellular vesicle isolation and characterization: toward clinical application. J. Clin. Invest. 126, 1152-1162. <https://doi.org/10.1172/JCI81129>
90. Yamamoto, S., Azuma, E., Muramatsu, M., Hamashima, T., Yoko, I., Sasahara, M. (2016) Significance of extracellular vesicles: pathobiological roles in disease. Cell Struct. Funct. 41, 137-143. <https://doi.org/10.1247/csf.16014>
91. Yong, P. J., Koh, C. H., Shim, W. S. (2013) Endothelial microparticles: missing link in endothelial dysfunction? Eur. J. Prev. Cardiol. 20, 496-512. <https://doi.org/10.1177/2047487312445001>
92. Yuana, Y., Bertina, R. M., Osanto, S. (2011) Pre-analytical and analytical issues in the analysis of blood microparticles. Thromb. Haemost. 105, 396-408. <https://doi.org/10.1160/TH10-09-0595>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Archive