Fol. Biol. 2018, 64, 137-143

https://doi.org/10.14712/fb2018064040137

Comparison of Fully Automated and Semi-Automated Methods for Species Identification

E. Y. Kalafi1, M. K. Anuar1, M. K. Sakharkar2, S. K. Dhillon1

1Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
2Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada

Received June 2018
Accepted September 2018

References

1. Abu, A., Lim, S. L. H., Sidhu, A. S., Dhillon, S. K. (2013) Biodiversity image retrieval framework for monogeneans. Syst. Biodivers. 11, 19-33. <https://doi.org/10.1080/14772000.2012.761655>
2. Adams, D. C., Rohlf, F. J., Slice, D. E. (2004) Geometric morphometrics: ten years of progress following the “revolution”. Ital. J. Zool. 71, 5-16. <https://doi.org/10.1080/11250000409356545>
3. Ali, R., Hussain, A., Bron, J. E., Shinn, A. P. (2011) Multistage classification of Gyrodactylus species using machine learning and feature selection techniques. In: 11th International Conference on Intelligence Systems Design and Application, pp. 457-462.
4. Ali, R., Hussain, A., Bron, J. E., Shinn, A. P. (2012) The use of ASM feature extraction and machine learning for the discrimination of members of the fish ectoparasite genus Gyrodactylus. In: ICONIP 2012. Neural Information Processing. Lecture Notes in Computer Science 7666, pp. 256-263, Springer, Berlin.
5. Ali, N. M., Khan, H. A., Then, A. Y.-H., Ching, C. V., Gaur, M., Dhillon, S. K. (2017) Fish ontology framework for taxonomy-based fish recognition. PeerJ. 5, e3811. <https://doi.org/10.7717/peerj.3811>
6. Benfield, M., Grosjean, P., Culverhouse, P., Irigolen, X., Sieracki, M., Lopez-Urrutia, A., Dam, H., Hu, Q., Davis, C., Hanson, A., Pilskaln, C., Riseman, E., Schulz, H., Utgoff, P., Gorsky, G. (2007) RAPID: Research on automated plankton identification. Oceanography (Wash. D.C.) 20, 172-187. <https://doi.org/10.5670/oceanog.2007.63>
7. Brooks, D. R., McLennan, D. A. (1993) Comparative study of adaptive radiations with an example using parasitic flatworms (Platyhelminthes: Cercomeria). Am. Nat. 142, 755-778. <https://doi.org/10.1086/285571>
8. Culverhouse, P. F., Williams, R., Reguera, B., Herry, V., GonzlezGil, S. (2003) Do experts make mistakes? A comparison of human and machine identification of dinoflagellates. Mar. Ecol. Prog. Ser. 247, 17-25. <https://doi.org/10.3354/meps247017>
9. Duda, R. O., Hart, P. E., Stork, D. G. (2012) Pattern Classification. John Wiley & Sons Inc.
10. Fu, W. J., Carroll, R. J., Wang, S. (2005) Estimating misclassification error with small samples via bootstrap cross-validation. Bioinformatics 21, 1979-1986. <https://doi.org/10.1093/bioinformatics/bti294>
11. James Rohlf, F., Marcus, L. F. (1993) A revolution morphometrics. Trends Ecol. Evol. 8, 129-132. <https://doi.org/10.1016/0169-5347(93)90024-J>
12. Jin, T., Hou, X., Li, P., Zhou, F. (2015) A novel method of automatic plant species identification using sparse representation of leaf tooth features. PloS One 10, e0139482. <https://doi.org/10.1371/journal.pone.0139482>
13. Kalafi, E. Y., Tan, W. B., Town, C., Dhillon, S. K. (2016) Automated identification of monogeneans using digital image processing and k-nearest neighbour approaches. BMC Bioinformatics 17, 511. <https://doi.org/10.1186/s12859-016-1376-z>
14. Kalafi, E. Y., Town, C., Dhillon, S. K. (2018) How automated image analysis techniques help scientists in species identification and classification? Folia Morphol. (Warsz) 77, 179-193. <https://doi.org/10.5603/FM.a2017.0079>
15. Kearn, G. (2013) Some aspects of the biology of monogenean (Platyhelminth) parasites of marine and freshwater fishes. Oceanography 2, 1-7.
16. Khang, T. F., Soo, O. Y. M., Tan, W. B., Lim, L. H. S. (2016) Monogenean anchor morphometry: systematic value, phylogenetic signal, and evolution. PeerJ. 4, e1668. <https://doi.org/10.7717/peerj.1668>
17. Latourrette, M. (2000) Toward an explanatory similarity measure for Nearest-Neighbor Classification. In: ECML 2000. Proceedings of the 11th European Conference on Machine Learning, pp. 238-245, London, UK.
18. Leow, L. K., Chew, L.-L., Chong, V. C., Dhillon, S. K. (2015) Automated identification of copepods using digital image processing and artificial neural network. BMC Bioinformatics 16, S4. <https://doi.org/10.1186/1471-2105-16-S18-S4>
19. Loos, A., Ernst, A. (2013) An automated chimpanzee identification system using face detection and recognition. EURASIP J. Image Video Process 2013, 1-17. <https://doi.org/10.1186/1687-5281-2013-49>
20. Mehdipour Ghazi, M., Yanikoglu, B., Aptoula, E. (2017) Plant identification using deep neural networks via optimization of transfer learning parameters. Neurocomputing 235, 228-235. <https://doi.org/10.1016/j.neucom.2017.01.018>
21. Mosleh, M. A., Manssor, H., Malek, S., Milow, P., Salleh, A. (2012) A preliminary study on automated freshwater algae recognition and classification system. BMC Bioinformatics 13, S25. <https://doi.org/10.1186/1471-2105-13-S17-S25>
22. Preez, L. H. D., Maritz, M. F. (2006) Demonstrating morphometric protocols using polystome marginal hooklet measurements. Syst. Parasitol. 63, 1-15. <https://doi.org/10.1007/s11230-005-5496-5>
23. Salimi, N., Loh, K. H., Dhillon, S. K., Chong, V. C. (2016) Fully-automated identification of fish species based on otolith contour: using short-time Fourier transform and discriminant analysis (STFT-DA). PeerJ, 4, e1664. <https://doi.org/10.7717/peerj.1664>
24. See, M., Marsham, S., Chang, C. W., Chong, V. C., A. Sasekumar, Dhillon, S. K., Loh, K. H. (2016) The use of otolith morphometrics in determining the size and species identification of eight mullets (Mugiliformes: Mugilidae) from Malaysia. Sains Malaysiana 45, 735-743.
25. Shinn, A. P., Clers, S. des, Gibson, D. I., Sommerville, C. (1996) Multivariate analyses of morphometrical features from Gyrodactylus spp. (Monogenea) parasitising British salmonids: light microscope based studies. Syst. Parasitol. 33, 115-125. <https://doi.org/10.1007/BF00009427>
26. Strauss, R. E., Bookstein, F. L. (1982) The truss: body form reconstructions in morphometrics. Syst. Zool. 31, 113-135. <https://doi.org/10.2307/2413032>
27. Ververidis, D., Kotropoulos, C. (2008) Fast and accurate sequential floating forward feature selection with the Bayes classifier applied to speech emotion recognition. Signal Process. 88, 2956-2970. <https://doi.org/10.1016/j.sigpro.2008.07.001>
28. Vignon, M. (2011) Putting in shape – towards a unified approach for the taxonomic description of monogenean haptoral hard parts. Syst. Parasitol. 79, 161-174. <https://doi.org/10.1007/s11230-011-9303-1>
29. Webster, M., Sheets, H. D. (2010) A practical introduction to landmark-based geometric morphometrics. Quant. Methods Paleobiol. 16, 163-188.
30. Whittington, I. D. (1998) Diversity “down under”: monogeneans in the Antipodes (Australia) with a prediction of monogenean biodiversity worldwide. Int. J. Parasit. 28, 1481-1493. <https://doi.org/10.1016/S0020-7519(98)00064-2>
31. Wong, J. Y., Chu, C., Chong, V. C., Dhillon, S. K., Loh, K. H. (2016) Automated otolith image classification with multiple views: an evaluation on Sciaenidae. J. Fish Biol. 89, 1324-1344. <https://doi.org/10.1111/jfb.13039>
32. Yu, X., Wang, J., Kays, R., Jansen, P. A., Wang, T., Huang, T. (2013) Automated identification of animal species in camera trap images. EURASIP J. Image Video Process 2013, 52-53. <https://doi.org/10.1186/1687-5281-2013-52>
33. Zhan, M., Crane, M. M., Entchev, E. V., Caballero, A., de Abreu, D. A. F., Ch’ng, Q., Lu, H. (2015) Automated processing of imaging data through multi-tiered classification of biological structures illustrated using Caenorhabditis elegans. PLoS Comput. Biol. 11, e1004194. <https://doi.org/10.1371/journal.pcbi.1004194>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Submissions

Archive