Fol. Biol. 2018, 64, 125-136
https://doi.org/10.14712/fb2018064040125
Epigenetic View on Interferon γ Signalling in Tumour Cells
References
1. 2016) Epigenetic therapeutics: a new weapon in the war against cancer. Annu. Rev. Med. 67, 73-89.
< , N., Sharma, A. R., Baylin, S. B. (https://doi.org/10.1146/annurev-med-111314-035900>
2. 2017) The histone demethylase PHF8 is a molecular safeguard of the IFNγ response. Nucleic Acids Res. 45, 3800-3811.
, E., Fueyo, R., Pappa, S., Iacobucci, S., Badosa, C., Lois, S., Balada, M., Bosch-Presegué, L., Vaquero, A., Gutiérrez, S., Caelles, C., Gallego, C., de la Cruz, X., Martínez- Balbás, M. A. (
3. 2013) Epigenetic activation and silencing of the gene that encodes IFN-γ. Front. Immunol. 4, 112.
< , T. M., Collins, P. L., Collier, S. P., Henderson, M. A., Chang, S. (https://doi.org/10.3389/fimmu.2013.00112>
4. 2015) IFNγ induces DNA methylation-silenced GPR109A expression via pSTAT1/p300 and H3K18 acetylation in colon cancer. Cancer Immunol. Res. 3, 795-805.
< , K., Paschall, A. V., Yang, D, Chen, M. R., Simon, P. S., Bhutia, Y. D., Martin, P. M., Thangaraju, M., Browning, D. D., Ganapathy, V., Heaton, C. M., Gu, K., Lee, J. R., Liu, K. (https://doi.org/10.1158/2326-6066.CIR-14-0164>
5. 2017) Epigenetic strategies to boost cancer immunotherapies. Int. J. Mol. Sci. 18, 1108.
< , M. J. (https://doi.org/10.3390/ijms18061108>
6. 2007) The complex language of chromatin regulation during transcription. Nature 447, 407-412.
< , S. L. (https://doi.org/10.1038/nature05915>
7. 2009) An operational definition of epigenetics. Genes Dev. 23, 781-783.
< , S. L., Kouzarides, T., Shiekhattar, R., Shilatifard., A. (https://doi.org/10.1101/gad.1787609>
8. 1997) Cellular responses to interferon-γ. Annu. Rev. Immunol. 15, 749-795.
< , U., Klamp, T., Groot, M., Howard, J. C. (https://doi.org/10.1146/annurev.immunol.15.1.749>
9. 2007) Interferons at age 50: past, current and future impact on biomedicine. Nat. Rev. Drug Discov. 6, 975-990.
< , E. C., Sen, G. C, Uze, G., Silverman, R. H., Ransohoff , R. M., Foster, G. R., Stark, G. R. (https://doi.org/10.1038/nrd2422>
10. 2013) T-helper-1-cell cytokines drive cancer into senescence. Nature 494, 361-365.
< , H., Wieder, T., Brenner, E., Aßmann, S., Hahn, M., Alkhaled, M., Schilbach, K., Essmann, F., Kneilling, M., Griessinger, C., Ranta, F., Ullrich, S., Mocikat, R., Braungart, K, Mehra, T., Fehrenbacher, B., Berdel, J., Niessner, H., Meier, F., van den Broek, M., Häring, H. U., Handgretinger, R., Quintanilla-Martinez, L., Fend, F., Pesic, M., Bauer, J., Zender, L., Schaller, M., Schulze-Osthoff, K., Röcken, M. (https://doi.org/10.1038/nature11824>
11. 2018) The class I/IV HDAC inhibitor mocetinostat increases tumor antigen presentation, decreases immune suppressive cell types and augments checkpoint inhibitor therapy. Cancer Immunol. Immunother. 67, 381-392.
< , D., Sudhakar, N., Woods, D. M., Hallin, J., Engstrom, L. D., Aranda, R., Chiang, H., Sodré, A. L., Olson, P., Weber, J. S., Christensen, J. G. (https://doi.org/10.1007/s00262-017-2091-y>
12. 2008) HLA antigen changes in malignant cells: epigenetic mechanisms and biologic significance. Oncogene 27, 5869-5885.
< , M., Ferrone, S. (https://doi.org/10.1038/onc.2008.273>
13. 2018) Interferon-γ at the crossroads of tumor immune surveillance or evasion. Front. Immunol. 9, 847.
< , F., Cardoso, A. P., Gonçalves, R. M., Serre, K., Oliveira, M. J. (https://doi.org/10.3389/fimmu.2018.00847>
14. 2015) Multiple structural and epigenetic defects in the human leukocyte antigen class I antigen presentation pathway in a recurrent metastatic melanoma following immunotherapy. J. Biol. Chem. 290, 26562-26575.
< , C. C., Pirozzi, G., Wen, S. H., Chung, I. H., Chiu, B. L., Errico, S., Luongo, M., Lombardi, M. L., Ferrone, S. (https://doi.org/10.1074/jbc.M115.676130>
15. 2007) Dynamic changes in histonemethylation ‘marks’ across the locus encoding interferon-γ during the differentiation of T helper type 2 cells. Nat. Immunol. 8, 723-731.
< , S., Aune, T. M. (https://doi.org/10.1038/ni1473>
16. 2009) Histone deacetylases inhibit IFN-γ-inducible gene expression in mouse trophoblast cells. J. Immunol. 182, 6307-6315.
< , J. C., Holtz, R., Murphy, S. P. (https://doi.org/10.4049/jimmunol.0802454>
17. 2007) P-STAT1 mediates higher-order chromatin remodelling of the human MHC in response to IFN-γ. J. Cell Sci. 120, 3262-3270.
< , R., Jones, T., Wu, P. J., Bolzer, A., Costa-Pereira, A. P., Watling, D., Kerr, I. M., Sheer, D. (https://doi.org/10.1242/jcs.012328>
18. 2004) Regulated nucleosome mobility and the histone code. Nat. Struct. Mol. Biol. 11, 1037-1043.
< , M. S., Boeke, J. D., Wolberger, C. (https://doi.org/10.1038/nsmb851>
19. 2008) Methylation of CIITA promoter IV causes loss of HLA-II inducibility by IFN-γ in promyelocytic cells. Int. Immunol. 20, 1457-1466.
< , A., De Ambrosis, A., Banelli, B., Li Pira, G., Aresu, O., Romani, M., Ferrini, S., Accolla, R. S. (https://doi.org/10.1093/intimm/dxn103>
20. 2015) Hypermethylation of the interferon regulatory factor 5 promoter in Epstein- Barr virus-associated gastric carcinoma. J. Microbiol. 53, 70-76.
< , S. M., Lee, H. G., Cho, S. G., Kwon, S. H., Yoon, H., Kwon, H. J., Lee, J. H., Kim, H., Park, P. G., Kim, H., Hayward, S. D., Park, J. H., Lee, J. M. (https://doi.org/10.1007/s12275-014-4654-3>
21. 2005) IFN unresponsiveness in LNCaP cells due to the lack of JAK1 gene expression. Cancer Res. 65, 3447-3453.
< , G. P., Sheehan, K. C., Old, L. J., Schreiber, R. D. (https://doi.org/10.1158/0008-5472.CAN-04-4316>
22. 2017) Epigenetics and immunotherapy: the current state of play. Mol. Immunol. 87, 227-239.
< , J., Rao, S. (https://doi.org/10.1016/j.molimm.2017.04.012>
23. 1985) 5-Azacytidine treatment of a murine cytotoxic T cell line alters interferon-γ gene induction by interleukin 2. J. Immunol. 135, 1551-1554.
< , W. L., Ruscetti, F. W., Young, H. A. (https://doi.org/10.4049/jimmunol.135.3.1551>
24. 2008) IFN regulatory factor-1 negatively regulates CD4+ CD25+ regulatory T cell differentiation by repressing Foxp3 expression. J. Immunol. 181, 1673-1682.
< , A., Gabriele, L., Stellacci, E., Borghi, P., Perrotti, E., Ilari, R., Lanciotti, A., Remoli, A. L., Venditti, M., Belardelli, F., Battistini, A. (https://doi.org/10.4049/jimmunol.181.3.1673>
25. 2013) Genetic and epigenetic regulation of interferon regulatory factor expression: implications in human malignancies. J. Genet. Syndr. Gene Ther. 4, 205.
, A., Marsili, G., Battistini, A. (
26. 2006) 5-Aza-2’-deoxycytidine and IFN-γ cooperate to sensitize for TRAIL-induced apoptosis by upregulating caspase-8. Oncogene. 25, 5125-5133.
< , S., Debatin, K. M. (https://doi.org/10.1038/sj.onc.1209518>
27. 2003) MHC class I antigens, immune surveillance, and tumor immune escape. J. Cell Physiol. 195, 346-355.
< , A., Algarra, I., Garrido, F. (https://doi.org/10.1002/jcp.10290>
28. 2008) Cytokine signalling in the β-cell: a dual role for IFN-γ. Biochem. Soc. Trans. 36, 328-333.
< , C., Callewaert, H., Overbergh, L., Mathieu, C. (https://doi.org/10.1042/BST0360328>
29. 2009) Histone deacetylase inhibitors cooperate with IFN-γ to restore caspase-8 expression and overcome TRAIL resistance in cancers with silencing of caspase-8. Oncogene 28, 3097-30110.
< , S., Dittrich, A., Mohr, A., Schweitzer, T., Rutkowski, S., Krauss, J., Debatin, K. M., Fulda, S. (https://doi.org/10.1038/onc.2009.161>
30. 2012) Epigenomics of cancer – emerging new concepts. Biochimie 94, 2219-2230.
< , M. R., Egger, G. (https://doi.org/10.1016/j.biochi.2012.05.007>
31. 2015) Augmenting antitumor immune responses with epigenetic modifying agents. Front. Immunol. 6, 1-14.
< , E., Krueger, T. E. G., Lang, J. M. (https://doi.org/10.3389/fimmu.2015.00029>
32. 2016) IFNγ induces oxidative stress, DNA damage and tumor cell senescence via TGFβ/SMAD signaling-dependent induction of Nox4 and suppression of ANT2. Oncogene 35, 1236-1249.
< , S., Kucerova, A., Michlits, G., Kyjacova, L., Reinis, M., Korolov, O., Bartek, J., Hodny, Z. (https://doi.org/10.1038/onc.2015.162>
33. 2016) HDAC inhibitors as epigenetic regulators of the immune system: impacts on cancer therapy and inflammatory diseases. Biomed. Res. Int. 2016, 8797206.
< , E. E., Montgomery, M. R., Leyva, K. J. (https://doi.org/10.1155/2016/8797206>
34. 2013) The IRF family transcription factors at the interface of innate and adaptive immune responses. Cold Spring Harb. Symp. Quant Biol. 78, 105-116.
< , H., Negishi, H., Taniguchi, T. (https://doi.org/10.1101/sqb.2013.78.020321>
35. 2017) LSD1 collaborates with EZH2 to regulate expression of interferon-stimulated genes. Biomed. Pharmacother. 88, 728-737.
< ,Y., Huo, B., Fu, X., Hao, T., Zhang, Y., Guo Y., Hu, X. (https://doi.org/10.1016/j.biopha.2017.01.055>
36. 2007) The epigenomics of cancer. Cell 128, 683-692.
< , P. A., Baylin, S. B. (https://doi.org/10.1016/j.cell.2007.01.029>
37. 2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 13, 484-492.
< , P. A. (https://doi.org/10.1038/nrg3230>
38. 2016) Targeting the cancer epigenome for therapy. Nat. Rev. Genet. 17, 630-641.
< , P. A., Issa, J. P., Baylin, S. (https://doi.org/10.1038/nrg.2016.93>
39. 1999) Inhibition of DNA methyltransferase stimulates the expression of signal transducer and activator of transcription 1, 2, and 3 genes in colon tumor cells. Proc. Natl. Acad. Sci. USA 96, 14007-14012.
< , A. R., Peterson, P. W., Rawlins, J. T., Dalley, B. K., Yang, Q., Albertsen, H., Jones, D. A. (https://doi.org/10.1073/pnas.96.24.14007>
40. 2008) Histone deacetylase regulation of immune gene expression in tumor cells. Immunol. Res. 40, 164-178.
< , A. N., Tomasi, T. B. (https://doi.org/10.1007/s12026-007-0085-0>
41. 2001) The suppressors of cytokine signalling (SOCS). Cell. Mol. Life Sci. 58, 1627-1635.
< , B. T., Alexander, W. S. (https://doi.org/10.1007/PL00000801>
42. 2003) Epigenetic silencing of multiple interferon pathway genes after cellular immortalization. Oncogene 22, 4118-4127.
< , O. I., Draghici, S., Tang, L., Kraniak, J. M., Land, S. J., Tainsky, M. A. (https://doi.org/10.1038/sj.onc.1206594>
43. 2018) Decitibine improve the efficiency of anti-PD-1 therapy via activating the response to IFN/PD-L1 signal of lung cancer cells. Oncogene 37, 2302-2312.
< , Q., Wang, H., Li, A., Xu, Y., Tang, L., Chen, Q., Zhang, C., Gao, Y., Song, J., Du, Z. (https://doi.org/10.1038/s41388-018-0125-3>
44. 2008) Epigenetic disruption of interferon-γ response through silencing the tumor suppressor interferon regulatory factor 8 in nasopharyngeal, esophageal and multiple other carcinomas. Oncogene 27, 5267-5276.
< , K. Y., Geng, H., Ng, K. M., Yu, J., van Hasselt, A., Cao, Y., Zeng, Y. X., Wong, A. H., Wang, X., Ying, J., Srivastava, G., Lung, M. L., Wang, L. D., Kwok, T. T., Levi, B. Z., Chan, A. T., Sung, J. J., Tao, Q. (https://doi.org/10.1038/onc.2008.147>
45. 2015) Interferon regulatory factor 1 and histone H4 acetylation in systemic lupus erythematosus. Epigenetics 10, 191-199.
< , Y. T., Shi, L., Maurer, K., Song, L., Zhang, Z., Petri, M., Sullivan, K. E. (https://doi.org/10.1080/15592294.2015.1009764>
46. 2014) Immune regulation by low doses of the DNA methyltransferase inhibitor 5-azacitidine in common human epithelial cancers. Oncotarget 5, 587-598.
< , H., Chiappinelli, K. B., Guzzetta, A. A., Easwaran, H., Yen, R. W., Vatapalli, R., Topper, M. J., Luo, J., Connolly, R. M., Azad, N. S., Stearns, V., Pardoll, D. M., Davidson, N., Jones, P. A., Slamon, D. J., Baylin, S. B., Zahnow, C. A., Ahuja, N. (https://doi.org/10.18632/oncotarget.1782>
47. 2012) CIITA is silenced by epigenetic mechanisms that prevent the recruitment of transactivating factors in rhabdomyosarcoma cells. Int. J. Cancer 131, E437-448.
< , P., Zhu, B., Abraham, J. Keller, C., Davie, J. (https://doi.org/10.1002/ijc.26478>
48. 2017) The tumor suppressor interferon regulatory factor 8 inhibits β-catenin signaling in breast cancers, but is frequently silenced by promoter methylation. Oncotarget 8, 48875-48888.
< , X., Xiong, X., Shao, Q., Xiang, T., Li, L., Yin, X. (https://doi.org/10.18632/oncotarget.16511>
49. 2014) Methylation patterns of the IFN-γ gene in cervical cancer tissues. Sci. Rep. 4, 6331.
< , D., Jiang, C., Hu, X., Liu, H., Li, Q., Li, T., Yang, Y., Li, O. (https://doi.org/10.1038/srep06331>
50. 2000) Up-regulation of costimulatory/adhesion molecules by histone deacetylase inhibitors in acute myeloid leukemia cells. Blood 96, 3847-3856.
< , T., Towatari, M., Kosugi, H., Saito, H (https://doi.org/10.1182/blood.V96.12.3847>
51. 2000) Activation of MHC class I, II, and CD40 gene expression by histone deacetylase inhibitors. J. Immunol. 165, 7017-7024.
< , W. J., Kazim, A. L., Stewart, C., Romano, M. A., Catalano, G., Grande, C., Keiser, N., Santaniello, F., Tomasi, T. B. (https://doi.org/10.4049/jimmunol.165.12.7017>
52. 2008) Induction of MHC class I molecule cell surface expression and epigenetic activation of antigenprocessing machinery components in a murine model for human papilloma virus 16-associated tumours. Immunology 123, 218-227.
< , J., Indrova, M., Lubyova, B., Pribylova, H., Bieblova, J., Hejnar, J., Simova, J., Jandlova, T., Bubenik, J., Reinis, M. (https://doi.org/10.1111/j.1365-2567.2007.02689.x>
53. 2012) IRF-8 controls melanoma progression by regulating the cross talk between cancer and immune cells within the tumor microenvironment. Neoplasia 14, 1223-1235.
< , F., Schiavoni, G., Sestili, P., Spadaro, F., Fragale, A., Sistigu, A., Lucarini, V., Spada, M., Sanchez, M., Scala, S., Battistini, A., Belardelli, F., Gabriele, L. (https://doi.org/10.1593/neo.121444>
54. 2008) DNA methylation represses IFN-γ induced and signal transducer and activator of transcription 1-mediated IFN regulatory factor 8 activation in colon carcinoma cells. Mol. Cancer Res. 6, 1841-1851.
< , J. M., Yang, D., Huang, S., Georgi, D., Hewitt, S.M., Röcken, C., Tänzer, M., Ebert, M. P., Liu, K. (https://doi.org/10.1158/1541-7786.MCR-08-0280>
55. 2008) Loss of interferon-γ inducibility of the MHC class II antigen processing pathway in head and neck cancer: evidence for post-transcriptional as well as epigenetic regulation. Br. J. Dermatol. 158, 930-940.
< , M., Whiteside, T. L., van Kuik-Romein, P., Valesky, E.M., van den Elsen, P. J., Kaufmann, R., Seliger, B. (https://doi.org/10.1111/j.1365-2133.2008.08465.x>
56. 2013) DNA methylation and its basic function. Neuropsychopharmacology 38, 23-38.
< , L. D., Le, T., Fan, G. (https://doi.org/10.1038/npp.2012.112>
57. 2002) Kinetics of a γ interferon response: expression and assembly of CIITA promoter IV and inhibition by methylation. Mol. Cell. Biol. 22, 4781-4791.
< , A. C., Beresford, G. W., Mooney, M. R., Boss, J. M. (https://doi.org/10.1128/MCB.22.13.4781-4791.2002>
58. 1997) Expression of MHC class II molecules in different cellular and functional compartments is controlled by differential usage of multiple promoters of the transactivator CIITA. EMBO J. 16, 2851-2860.
< , A., Otten, L. A., Steimle, V., Mach, B. (https://doi.org/10.1093/emboj/16.10.2851>
59. 1999) Inhibition of T cell proliferation by macrophage tryptophan catabolism. J. Exp. Med. 189, 1363-1372.
< , D. H., Shafizadeh, E., Attwood, J. T., Bondarev, I., Pashine, A., Mellor, A. L. (https://doi.org/10.1084/jem.189.9.1363>
60. 2001) DNA hypermethylation is a mechanism for loss of expression of the HLA class I genes in human esophageal squamous cell carcinomas. Carcinogenesis 22, 1615-1623.
< , Y., Yang, G., Song, Y., Zhao, X., So, C., Liao, J., Wang, L. D., Yang, C.S. (https://doi.org/10.1093/carcin/22.10.1615>
61. 2017) Promoter methylation modulates indoleamine 2,3-dioxygenase 1 induction by activated T cells in human breast cancers. Cancer Immunol. Res. 5, 330-344.
< , S. K., Gu, F., Lee, E. J., Choi, J. H., Han, Q., Kim, J., Ouzounova, M., Shull, A. Y., Pei, L., Hsu, P. Y., Kolhe, R., Shi, F., Choi, J., Chiou, K., Huang, T. H., Korkaya, H., Deng, L., Xin, H. B., Huang, S., Thangaraju, M., Sreekumar, A., Ambs, S., Tang, S. C., Munn, D. H., Shi, H. (https://doi.org/10.1158/2326-6066.CIR-16-0182>
62. 2005) Down-regulation of interferon regulatory factor 4 gene expression in leukemic cells due to hypermethylation of CpG motifs in the promoter region. Nucleic Acids Res. 33, 6895-6905.
< , C. A., Burchert, A., Holzle, K., Nitsche, A., Wittig, B., Neubauer, A., Schmidt, M. (https://doi.org/10.1093/nar/gki1001>
63. 1996) The proximal regulatory element of the interferon-γ promoter mediates selective expression in T cells. J. Biol. Chem. 271, 31964-31972.
< , L. A., Sweetser, M. T., Weaver, W. M., Hoeffler, J. P., Kerppola, T. K., Wilson, C. B. (https://doi.org/10.1074/jbc.271.50.31964>
64. 2005) Mechanisms of type-I- and type-II-interferon- mediated signalling. Nat. Rev. Immunol. 5, 375-386.
< , L. C. (https://doi.org/10.1038/nri1604>
65. 2008) DNA methylation controls Foxp3 gene expression. Eur. J. Immunol. 2008 38, 1654-1663.
< , J. K., Kretschmer, K., Freyer, J., Floess, S., Garbe, A., Baron, U., Olek, S., Hamann, A., von Boehmer, H., Huehn, J. (https://doi.org/10.1002/eji.200838105>
66. 2014) Interferon-γ induced cell death: regulation and contributions of nitric oxide, cJun Nterminal kinase, reactive oxygen species and peroxynitrite. Biochim. Biophys. Acta 1843, 2645-2661.
< , S., Chandrasekar, B. S., Saha, B., Victor, E. S., Majumdar, S., Nandi, D. (https://doi.org/10.1016/j.bbamcr.2014.06.014>
67. 2010) Immunotherapy of MHC class I-deficient tumors. Future Oncol. 6, 1577-1589.
< , M. (https://doi.org/10.2217/fon.10.128>
68. 2007) Distinct mechanisms of loss of IFN-γ mediated HLA class I inducibility in two melanoma cell lines. BMC Cancer 7, 34.
< , T., Méndez, R., Del Campo, A., Jiménez, P., Aptsiauri, N., Garrido, F., Ruiz-Cabello, F. (https://doi.org/10.1186/1471-2407-7-34>
69. 2004) Histone deacetylase activity is required to recruit RNA polymerase II to the promoters of selected interferon-stimulated early response genes. J. Biol. Chem. 279, 40362-40367.
< , S., Potla, R., Larner, A. C. (https://doi.org/10.1074/jbc.M406400200>
70. 2002) DNA methylation and histone deacetylation associated with silencing DAP kinase gene expression in colorectal and gastric cancers. Br. J. Cancer 86, 1817-1823.
< , A., Toyota, M., Itoh, F., Kikuchi, T., Obata, T., Sasaki, Y., Suzuki, H., Yawata, A., Kusano, M., Fujita, M., Hosokawa, M., Yanagihara, K., Tokino, T., Imai, K. (https://doi.org/10.1038/sj.bjc.6600319>
71. 2014) Post-transcriptional regulation of interferons and their signalling pathways. J. Interferon Cytokine Res. 34, 318-329.
< , R. (https://doi.org/10.1089/jir.2013.0117>
72. 2013) Global DNA methylation remodeling accompanies CD8 T cell effector function. J. Immunol. 191, 3419-3429.
< , C. D., Barwick, B. G., Youngblood, B. A., Ahmed, R., Boss, J. M. (https://doi.org/10.4049/jimmunol.1301395>
73. 2014) Interferon- stimulated genes: a complex web of host defenses. Annu. Rev. Immunol. 32, 513-45.
< , W. M., Chevillotte, M. D., Rice, C. M. (https://doi.org/10.1146/annurev-immunol-032713-120231>
74. 2007) Comprehensive epigenetic profiling identifies multiple distal regulatory elements directing transcription of the gene encoding interferon-γ. Nat. Immunol. 2007 8, 732-742.
, J. R., Dorschner, M. O., Sekimata, M., Santer, D. M, Shnyreva, M., Fitzpatrick, D. R., Stamatoyannopoulos, J. A., Wilson, C. B. (
75. 2004) Interferon-γ: an overview of signals, mechanisms and functions. J. Leukoc. Biol. 75, 163-189.
< , K., Hertzog, P. J., Ravasi, T., Hume, D. A. (https://doi.org/10.1189/jlb.0603252>
76. 2015) Function and information content of DNA methylation. Nature 517, 321-326.
< , D. (https://doi.org/10.1038/nature14192>
77. 2001) Expression of HLA class I antigens and restoration of antigen-specific CTL response in melanoma cells following 5-aza-2′-deoxycytidine treatment. Int. J. Cancer 94, 243-251.
< , A., Tanzarella, S., Lionello, I., Mendez, R., Traversari, C., Ruiz-Cabello, F., Garrido, F. (https://doi.org/10.1002/ijc.1452>
78. 2011) Role of gene methylation in antitumor immune response: implication for tumor progression. Cancers (Basel) 3, 1672-1690.
< , A., Castro-Vega, I., Redondo, M. (https://doi.org/10.3390/cancers3021672>
79. 2009) Down-regulation of HLA class I and NKG2D ligands through a concerted action of MAPK and DNA methyltransferases in colorectal cancer cells. Int. J. Cancer 125, 1626-1639.
< , C., Kuner, R., Falk, C. S., Lund, P., Sueltmann, H., Braun, M., Buness, A., Ruschhaupt, M., Conrad, J., Mang- Fatehi, S., Stelniec, I., Krapfenbauer, U., Poustka, A., Schäfer, R. (https://doi.org/10.1002/ijc.24557>
80. 2007) Epigenetic control of the immune escape mechanisms in malignant carcinomas. Mol. Cell. Biol. 27, 7886-7894.
< , A. F., David, M. D., Seipp, R. P., Hartikainen, J. A., Gopaul, R., Jefferies, W. A. (https://doi.org/10.1128/MCB.01547-07>
81. 2008) Epigenetic enhancement of antigen processing and presentation promotes immune recognition of tumors. Cancer Res. 68, 9601-9607.
< , A. F., Omilusik, K., David, M. D., Seipp, R. P., Hartikainen, J., Gopaul, R., Choi, K.B., Jefferies, W. A. (https://doi.org/10.1158/0008-5472.CAN-07-5270>
82. 2010) Identification of novel methylation markers in hepatocellular carcinoma using a methylation array. J. Korean Med. Sci. 25, 1152-1159.
< , S. H., Kim, B. H., Jang, J. J., Suh, K. S., Kang, G. H. (https://doi.org/10.3346/jkms.2010.25.8.1152>
83. 2011) Immunotherapy augments the effect of 5-azacytidine on HPV16- associated tumours with different MHC class I-expression status. Br. J. Cancer 105, 1533-1541.
< , J., Polláková, V., Indrová, M., Mikyšková, R., Bieblová, J., Stěpánek, I., Bubeník, J., Reiniš, M. (https://doi.org/10.1038/bjc.2011.428>
84. 2007) Epigenetic regulation of Ifng expression. Nat. Immunol. 8, 681-683.
< , C. G., Flavell, R. A. (https://doi.org/10.1038/ni0707-681>
85. 2017) Epigenetic therapy activates type I interferon signaling in murine ovarian cancer to reduce immunosuppression and tumor burden. Proc. Natl. Acad. Sci. USA 114, E10981-E10990.
< , M. L., Chiappinelli, K. B., Li, H., Murphy, L. M., Travers M. E,. Topper, M. J., Mathios, D., Lim, M., Shih, I. M., Wang, T. L., Hung, C. F., Bhargava, V., Wiehagen, K. R., Cowley, G. S., Bachman, K. E., Strick, R., Strissel, P. L., Baylin, S. B., Zahnow, C. A. (https://doi.org/10.1073/pnas.1712514114>
86. 2016) Reading the combinatorial histone language. ACS Chem. Biol. 11, 564-574.
< , Z., Denu, J. M. (https://doi.org/10.1021/acschembio.5b00864>
87. 2018) Epigenetic silencing of TAP1 in aldefluor+ breast cancer stem cells contributes to their enhanced immune evasion. Stem Cells 36, 641-654.
< , M., Vidovic, D., Paine, A. S., Huynh, T. T., Coyle, K. M., Thomas, M. L., Cruickshank, B. M., Dean, C. A., Clements, D. R., Kim, Y., Lee, K., Gujar, S. A., Weaver, I. C. G., Marcato, P. (https://doi.org/10.1002/stem.2780>
88. 1994) Cellular commitment to oncogene- induced transformation or apoptosis is dependent on the transcription factor IRF-1. Cell 77, 829-839.
< , N., Ishihara, M., Kitagawa, M., Harada, H., Kimura, T., Matsuyama, T., Lamphier, M. S., Aizawa, S., Mak, T. W., Taniguchi, T. (https://doi.org/10.1016/0092-8674(94)90132-5>
89. 2016) DNA methyltransferase inhibition increases efficacy of adoptive cellular immunotherapy of murine breast cancer. Cancer Immunol. Immunother. 65, 1061-1073.
< , K. P., Graham, L. J., Payne, K. K., Manjili, M. H., Baek, A., Damle, S. R., Bear, H. D. (https://doi.org/10.1007/s00262-016-1868-8>
90. 2017) Hypermethylation of IFN-γ in oral cancer tissues. Clin. Oral Investig. 21, 2535-2542.
< , S., Jiang, C., Liu, X., Xu, S., Zhang, Z., Chen, H., Zhang, Y., Liu, Y., Ma, D. (https://doi.org/10.1007/s00784-017-2052-z>
91. 2006) Epigenetic regulation of immune escape genes in cancer. Cancer Immunol. Immunother. 55, 1159-1184.
< , T. B., Magner, W. J., Khan, A. N. (https://doi.org/10.1007/s00262-006-0164-4>
92. 2008) Epigenetic silencing of the interferon regulatory factor ICSBP/IRF8 in human multiple myeloma. Exp. Hematol. 36, 1673-1681.
< , M., Jernberg-Wiklund, H., Nilsson, K., Öberg, F. (https://doi.org/10.1016/j.exphem.2008.08.001>
93. 2002) Lack of IFN-γ-mediated induction of the class II transactivator (CIITA) through promoter methylation is predominantly found in developmental tumor cell lines. Int. J. Cancer 97, 501-507.
< , N., Biesta, P., Quinten, E., van den Elsen, P. J. (https://doi.org/10.1002/ijc.1623>
94. 2014) Epigenetic regulations in the IFNγ signalling pathway: IFNγ-mediated MHC class I upregulation on tumour cells is associated with DNA demethylation of antigenpresenting machinery genes. Oncotarget 5, 6923-6935.
< , V., Štěpánek, I., Hrušková, V., Šenigl, F., Mayerová, V., Šrámek, M., Šímová, J., Bieblová, J., Indrová, M., Hejhal, T., Dérian, N., Klatzmann, D., Six, A., Reiniš, M. (https://doi.org/10.18632/oncotarget.2222>
95. 2013) Downregulation of IFNG in CD4+ T cells in lung cancer through hypermethylation: a possible mechanism of tumor-induced immunosuppression. PLoS One 8, e79064.
< , F., Xu, J., Zhu, Q., Qin, X., Cao, Y., Lou, J., Xu, Y., Ke, X., Li, Q., Xie, E., Zhang, L., Sun, R., Chen, L., Fang, B., Pan, S. (https://doi.org/10.1371/journal.pone.0079064>
96. 2013) Low dose decitabine treatment induces CD80 expression in cancer cells and stimulates tumor specific cytotoxic T lymphocyte responses. PLoS One 8, e62924.
< , L. X., Mei, Z. Y., Zhou, J. H., Yao, Y. S., Li, Y. H., Xu, Y. H., Li, J. X., Gao, X. N., Zhou, M. H., Jiang, M. M., Gao, L., Ding, Y., Lu, X. C., Shi, J. L., Luo, X. F., Wang, J., Wang, L. L., Qu, C,. Bai, X. F., Yu, L. (https://doi.org/10.1371/journal.pone.0062924>
97. 2013) Human leukocyte antigen-G is frequently expressed in glioblastoma and may be induced in vitro by combined 5-aza-2’-deoxycytidine and interferon-γ treatments: results from a multicentric study. Am. J. Pathol. 182, 540-552.
< , I. J., Simões, R. T., Yaghi, L., Donadi, E. A., Pancoto, J. T., Poras, I., Lechapt-Zalcman, E., Bernaudin, M., Valable, S., Carlotti, C. G. Jr., Flajollet, S., Jensen, S. S., Ferrone, S., Carosella, E. D., Kristensen, B. W., Moreau, P. (https://doi.org/10.1016/j.ajpath.2012.10.021>
98. 2014) The anticancer effects of HDAC inhibitors require the immune system. Oncoimmunology 3, e27414.
< , A. C., Smyth, M. J., Johnstone, R. W. (https://doi.org/10.4161/onci.27414>
99. 2015) HDAC inhibition upregulates PD-1 ligands in melanoma and augments immunotherapy with PD-1 blockade. Cancer Immunol. Res. 3, 1375-1385.
< , D. M., Sodré, A. L., Villagra, A., Sarnaik, A., Sotomayor, E. M., Weber, J. (https://doi.org/10.1158/2326-6066.CIR-15-0077-T>
100. 2013) Alterations of immune response of non-small cell lung cancer with azacytidine. Oncotarget 4, 2067-2079.
< , J., Wang, W., Koch, A., Easwaran, H., Mohammad, H. P., Vendetti, F., Vancriekinge, W., Demeyer, T., Du, Z., Parsana, P., Rodgers, K., Yen, R. W., Zahnow, C. A., Taube, J. M., Brahmer, J. R., Tykodi, S. S., Easton, K., Carvajal, R. D., Jones, P. A., Laird, P. W., Weisenberger, D. J., Tsai, S., Juergens, R. A., Topalian, S. L., Rudin, C. M., Brock, M. V., Pardoll, D., Baylin, S. B. (https://doi.org/10.18632/oncotarget.1542>
101. 2010) Active DNA demethylation: many roads lead to Rome. Nat. Rev. Mol. Cell. Biol. 11, 607-620.
< , S. C., Zhang, Y. (https://doi.org/10.1038/nrm2950>
102. 2012) An epigenetic mechanism for high, synergistic expression of indoleamine 2,3-dioxygenase 1 (IDO1) by combined treatment with zebularine and IFN-γ: potential therapeutic use in autoimmune diseases. Mol. Immunol. 51, 101-111.
< , Z. T, Sjögren, H. O., Salford, L. G., Widegren, B. (https://doi.org/10.1016/j.molimm.2012.01.006>
103. 2010) DNA methylation of interferon regulatory factors in gastric cancer and noncancerous gastric mucosae. Cancer Sci. 101, 1708-1716.
< , M., Toyota, M., Suzuki, H., Nojima, M., Yamamoto, E., Kamimae, S., Watanabe, Y., Kai, M., Akashi, H., Maruyama, R., Sasaki, Y., Yamano, H., Sugai, T., Shinomura, Y., Imai, K., Tokino, T., Itoh, F. (https://doi.org/10.1111/j.1349-7006.2010.01581.x>
104. 2003) Effect of promoter methylation on the regulation of IFN-γ gene during in vitro differentiation of human peripheral blood T cells into a Th2 population. J. Immunol. 171, 2510-2516.
< , S., Ghosh, P., Kusaba, H., Buchholz, M., Longo, D. L. (https://doi.org/10.4049/jimmunol.171.5.2510>
105. 2011) The two faces of interferon- γ in cancer. Clin. Cancer Res. 17, 6118-6124.
< , M. R., Merlino, G. (https://doi.org/10.1158/1078-0432.CCR-11-0482>
106. 2011) Histone acetylation regulates the cell-specific and interferon-γ-inducible expression of extracellular superoxide dismutase in human pulmonary arteries. Am. J. Respir. Cell. Mol. Biol. 45, 953-961.
< , I. N., Stepp, M. W., Vorst, A. L., Folz, R. J. (https://doi.org/10.1165/rcmb.2011-0012OC>
107. 2014) Interferon regulatory factor 8 functions as a tumor suppressor in renal cell carcinoma and its promoter methylation is associated with patient poor prognosis. Cancer Lett. 354, 227-234.
< , Q., Zhang, L., Li, L., Wang, Z., Ying, J., Fan, Y., Xu, B., Wang, L., Liu, Q., Chen, G., Tao, Q., Jin, J. (https://doi.org/10.1016/j.canlet.2014.07.040>
108. 2015) Interferon regulatory factors: at the crossroads of immunity, metabolism, and disease. Biochim. Biophys. Acta 1852, 365-378.
< , G. N., Jiang, D. S., Li, H. (https://doi.org/10.1016/j.bbadis.2014.04.030>