Fol. Biol. 2018, 64, 137-143
https://doi.org/10.14712/fb2018064040137
Comparison of Fully Automated and Semi-Automated Methods for Species Identification
References
1. 2013) Biodiversity image retrieval framework for monogeneans. Syst. Biodivers. 11, 19-33.
< , A., Lim, S. L. H., Sidhu, A. S., Dhillon, S. K. (https://doi.org/10.1080/14772000.2012.761655>
2. 2004) Geometric morphometrics: ten years of progress following the “revolution”. Ital. J. Zool. 71, 5-16.
< , D. C., Rohlf, F. J., Slice, D. E. (https://doi.org/10.1080/11250000409356545>
3. Ali, R., Hussain, A., Bron, J. E., Shinn, A. P. (2011) Multistage classification of Gyrodactylus species using machine learning and feature selection techniques. In: 11th International Conference on Intelligence Systems Design and Application, pp. 457-462.
4. Ali, R., Hussain, A., Bron, J. E., Shinn, A. P. (2012) The use of ASM feature extraction and machine learning for the discrimination of members of the fish ectoparasite genus Gyrodactylus. In: ICONIP 2012. Neural Information Processing. Lecture Notes in Computer Science 7666, pp. 256-263, Springer, Berlin.
5. 2017) Fish ontology framework for taxonomy-based fish recognition. PeerJ. 5, e3811.
< , N. M., Khan, H. A., Then, A. Y.-H., Ching, C. V., Gaur, M., Dhillon, S. K. (https://doi.org/10.7717/peerj.3811>
6. 2007) RAPID: Research on automated plankton identification. Oceanography (Wash. D.C.) 20, 172-187.
< , M., Grosjean, P., Culverhouse, P., Irigolen, X., Sieracki, M., Lopez-Urrutia, A., Dam, H., Hu, Q., Davis, C., Hanson, A., Pilskaln, C., Riseman, E., Schulz, H., Utgoff, P., Gorsky, G. (https://doi.org/10.5670/oceanog.2007.63>
7. 1993) Comparative study of adaptive radiations with an example using parasitic flatworms (Platyhelminthes: Cercomeria). Am. Nat. 142, 755-778.
< , D. R., McLennan, D. A. (https://doi.org/10.1086/285571>
8. 2003) Do experts make mistakes? A comparison of human and machine identification of dinoflagellates. Mar. Ecol. Prog. Ser. 247, 17-25.
< , P. F., Williams, R., Reguera, B., Herry, V., GonzlezGil, S. (https://doi.org/10.3354/meps247017>
9. Duda, R. O., Hart, P. E., Stork, D. G. (2012) Pattern Classification. John Wiley & Sons Inc.
10. 2005) Estimating misclassification error with small samples via bootstrap cross-validation. Bioinformatics 21, 1979-1986.
< , W. J., Carroll, R. J., Wang, S. (https://doi.org/10.1093/bioinformatics/bti294>
11. 1993) A revolution morphometrics. Trends Ecol. Evol. 8, 129-132.
< Rohlf, F., Marcus, L. F. (https://doi.org/10.1016/0169-5347(93)90024-J>
12. 2015) A novel method of automatic plant species identification using sparse representation of leaf tooth features. PloS One 10, e0139482.
< , T., Hou, X., Li, P., Zhou, F. (https://doi.org/10.1371/journal.pone.0139482>
13. 2016) Automated identification of monogeneans using digital image processing and k-nearest neighbour approaches. BMC Bioinformatics 17, 511.
< , E. Y., Tan, W. B., Town, C., Dhillon, S. K. (https://doi.org/10.1186/s12859-016-1376-z>
14. 2018) How automated image analysis techniques help scientists in species identification and classification? Folia Morphol. (Warsz) 77, 179-193.
< , E. Y., Town, C., Dhillon, S. K. (https://doi.org/10.5603/FM.a2017.0079>
15. 2013) Some aspects of the biology of monogenean (Platyhelminth) parasites of marine and freshwater fishes. Oceanography 2, 1-7.
, G. (
16. 2016) Monogenean anchor morphometry: systematic value, phylogenetic signal, and evolution. PeerJ. 4, e1668.
< , T. F., Soo, O. Y. M., Tan, W. B., Lim, L. H. S. (https://doi.org/10.7717/peerj.1668>
17. Latourrette, M. (2000) Toward an explanatory similarity measure for Nearest-Neighbor Classification. In: ECML 2000. Proceedings of the 11th European Conference on Machine Learning, pp. 238-245, London, UK.
18. 2015) Automated identification of copepods using digital image processing and artificial neural network. BMC Bioinformatics 16, S4.
< , L. K., Chew, L.-L., Chong, V. C., Dhillon, S. K. (https://doi.org/10.1186/1471-2105-16-S18-S4>
19. 2013) An automated chimpanzee identification system using face detection and recognition. EURASIP J. Image Video Process 2013, 1-17.
< , A., Ernst, A. (https://doi.org/10.1186/1687-5281-2013-49>
20. 2017) Plant identification using deep neural networks via optimization of transfer learning parameters. Neurocomputing 235, 228-235.
< Ghazi, M., Yanikoglu, B., Aptoula, E. (https://doi.org/10.1016/j.neucom.2017.01.018>
21. 2012) A preliminary study on automated freshwater algae recognition and classification system. BMC Bioinformatics 13, S25.
< , M. A., Manssor, H., Malek, S., Milow, P., Salleh, A. (https://doi.org/10.1186/1471-2105-13-S17-S25>
22. 2006) Demonstrating morphometric protocols using polystome marginal hooklet measurements. Syst. Parasitol. 63, 1-15.
< , L. H. D., Maritz, M. F. (https://doi.org/10.1007/s11230-005-5496-5>
23. 2016) Fully-automated identification of fish species based on otolith contour: using short-time Fourier transform and discriminant analysis (STFT-DA). PeerJ, 4, e1664.
< , N., Loh, K. H., Dhillon, S. K., Chong, V. C. (https://doi.org/10.7717/peerj.1664>
24. 2016) The use of otolith morphometrics in determining the size and species identification of eight mullets (Mugiliformes: Mugilidae) from Malaysia. Sains Malaysiana 45, 735-743.
, M., Marsham, S., Chang, C. W., Chong, V. C., A. Sasekumar, Dhillon, S. K., Loh, K. H. (
25. 1996) Multivariate analyses of morphometrical features from Gyrodactylus spp. (Monogenea) parasitising British salmonids: light microscope based studies. Syst. Parasitol. 33, 115-125.
< , A. P., Clers, S. des, Gibson, D. I., Sommerville, C. (https://doi.org/10.1007/BF00009427>
26. 1982) The truss: body form reconstructions in morphometrics. Syst. Zool. 31, 113-135.
< , R. E., Bookstein, F. L. (https://doi.org/10.2307/2413032>
27. 2008) Fast and accurate sequential floating forward feature selection with the Bayes classifier applied to speech emotion recognition. Signal Process. 88, 2956-2970.
< , D., Kotropoulos, C. (https://doi.org/10.1016/j.sigpro.2008.07.001>
28. 2011) Putting in shape – towards a unified approach for the taxonomic description of monogenean haptoral hard parts. Syst. Parasitol. 79, 161-174.
< , M. (https://doi.org/10.1007/s11230-011-9303-1>
29. 2010) A practical introduction to landmark-based geometric morphometrics. Quant. Methods Paleobiol. 16, 163-188.
, M., Sheets, H. D. (
30. 1998) Diversity “down under”: monogeneans in the Antipodes (Australia) with a prediction of monogenean biodiversity worldwide. Int. J. Parasit. 28, 1481-1493.
< , I. D. (https://doi.org/10.1016/S0020-7519(98)00064-2>
31. 2016) Automated otolith image classification with multiple views: an evaluation on Sciaenidae. J. Fish Biol. 89, 1324-1344.
< , J. Y., Chu, C., Chong, V. C., Dhillon, S. K., Loh, K. H. (https://doi.org/10.1111/jfb.13039>
32. 2013) Automated identification of animal species in camera trap images. EURASIP J. Image Video Process 2013, 52-53.
< , X., Wang, J., Kays, R., Jansen, P. A., Wang, T., Huang, T. (https://doi.org/10.1186/1687-5281-2013-52>
33. 2015) Automated processing of imaging data through multi-tiered classification of biological structures illustrated using Caenorhabditis elegans. PLoS Comput. Biol. 11, e1004194.
< , M., Crane, M. M., Entchev, E. V., Caballero, A., de Abreu, D. A. F., Ch’ng, Q., Lu, H. (https://doi.org/10.1371/journal.pcbi.1004194>