Fol. Biol. 2018, 64, 155-166

https://doi.org/10.14712/fb2018064050155

Bone Marrow-Derived Cells Participate in Composition of the Satellite Cell Niche in Intact and Regenerating Mouse Skeletal Muscle

Dana Čížková1, Z. Komárková1, A. Bezrouk2, L. Macháčková1, J. Vávrová3, S. Filip4, J. Mokrý1

1Department of Histology and Embryology, Faculty of Medicine in Hradec Králové, Charles University, Czech Republic
2Department of Medical Biophysics, Faculty of Medicine in Hradec Králové, Charles University, Czech Republic
3Department of Radiobiology, Faculty of Military Health Sciences in Hradec Králové, University of Defence, Czech Republic
4Department of Oncology and Radiotherapy, Faculty of Medicine in Hradec Králové, Charles University, Czech Republic

Received October 2018
Accepted November 2018

References

1. Abedi, M., Greer, D. A., Foster, B. M., Colvin, G. A., Harpel, J. A., Demers, D. A., Pimentel, J., Dooner, M. S., Quesenberry, P. J. (2005) Critical variables in the conversion of marrow cells to skeletal muscle. Blood 106, 1488-1494. <https://doi.org/10.1182/blood-2005-01-0264>
2. Abedi, M., Foster, B. M., Wood, K. D., Colvin, G. A., McLean, S. D., Johnson, K. W., Greer, D. A. (2007) Haematopoietic stem cells participate in muscle regeneration. Br. J. Haematol. 138, 792-801. <https://doi.org/10.1111/j.1365-2141.2007.06720.x>
3. Abou-Khalil, R., Mounier, R., Chazaud, B. (2010) Regulation of myogenic stem cell behavior by vessel cells: the “ménage à trois” of satellite cells, periendothelial cells and endothelial cells. Cell Cycle 9, 892-896. <https://doi.org/10.4161/cc.9.5.10851>
4. Ankrum, J. A., Ong, J. F., Karp, J. M. (2014) Mesenchymal stem cells: immune evasive, not immune privileged. Nat. Biotechnol. 32, 252-260. <https://doi.org/10.1038/nbt.2816>
5. Arnold, L., Henry, A., Poron, F., Baba-Amer, Y., van Rooijen, N., Plonquet, A., Gherardi, R. K., Chazaud, B. (2007) Inflammatory monocytes recruited after skeletal muscle in jury switch into antiinflammatory macrophages to support myogenesis. J. Exp, Med. 204, 1057-1069. <https://doi.org/10.1084/jem.20070075>
6. Asahara, T., Murohara, T., Sullivan, A., Silver, M., van der Zee, R., Li, T., Witzenbichler, B., Schatteman, G., Isner, J. M. (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275, 964-967. <https://doi.org/10.1126/science.275.5302.964>
7. Barcellos-de-Souza, P., Gori, V., Bambi, F., Chiarugi, P. (2013) Tumor microenvironment: bone marrow-mesenchymal stem cells as key players. Biochim. Biophys. Acta 1836, 321-335.
8. Bentzinger, C. F., Wang, Y. X., Dumont, N. A., Rudnicki, M.A. (2013) Cellular dynamics in the muscle satellite cell niche. EMBO Rep. 14, 1062-1072. <https://doi.org/10.1038/embor.2013.182>
9. Bianco, P., Gehron Robey, P. (2000) Marrow stromal stem cells. J. Clin. Invest. 105, 1663-1668. <https://doi.org/10.1172/JCI10413>
10. Brack, A. S., Conboy, I. M., Conboy, M. J., Shen, J., Rando, T. A. (2008) A temporal switch from notch to Wnt signaling in muscle stem cells is necessary for normal adult myogenesis. Cell Stem Cell 2, 50-59. <https://doi.org/10.1016/j.stem.2007.10.006>
11. Brazelton, T. R., Nystrom, M., Blau, H. M. (2003) Significant differences among skeletal muscles in the incorporation of bone marrow-derived cells. Dev. Biol. 262, 64-74. <https://doi.org/10.1016/S0012-1606(03)00357-9>
12. Camargo, F. D., Green, R., Capetanaki, Y., Jackson, K. A., Goodell, M. A. (2003) Single hematopoietic stem cells generate skeletal muscle through myeloid intermediates. Nat. Med. 9, 1520-1527. <https://doi.org/10.1038/nm963>
13. Caplan, A. I. (1991) Mesenchymal stem cells. J. Orthop. Res. 9, 641-650. <https://doi.org/10.1002/jor.1100090504>
14. Chao, H., Hirschi, K. K. (2010) Hemato-vascular origins of endothelial progenitor cells? Microvasc. Res. 79, 169-173. <https://doi.org/10.1016/j.mvr.2010.02.003>
15. Chazaud, B., Sonnet, C., Lafuste, P., Bassez, G., Rimaniol, A. C., Poron, F., Authier, F. J., Dreyfus, P. A., Gherardi, R. K. (2003) Satellite cells attract monocytes and use macrophages as a support to escape apoptosis and enhance muscle growth. J. Cell. Biol. 163, 1133-1143. <https://doi.org/10.1083/jcb.200212046>
16. Christov, C., Chrétien, F., Abou-Khalil, R., Bassez, G., Vallet, G., Authier, F. J., Bassaglia, Y., Shinin, V., Tajbakhsh, S., Chazaud, B., Gherardi, R. K. (2007) Muscle satellite cells and endothelial cells: close neighbors and privileged partners. Mol. Biol. Cell 18, 1397-1409. <https://doi.org/10.1091/mbc.e06-08-0693>
17. Čížková, D., Vávrová, J., Mičuda, S., Filip, S., Brčáková, E., Brůčková, L., Mokrý, J. (2011) Role of transplanted bone marrow cells in response to skeletal muscle injury. Folia Biol. (Praha) 57, 232-241.
18. Corbel, S. Y., Lee, A., Yi, L., Duenas, J., Brazelton, T. R., Blau, H. M., Rossi F. M. (2003) Contribution of hematopoietic stem cells to skeletal muscle. Nat. Med. 9, 1528-1532. <https://doi.org/10.1038/nm959>
19. de la Garza-Rodea, A. S., van der Velde, I., Boersma, H., Gonçalves, M. A., van Bekkum, D. W., de Vries, A. A., Knaän- Shanzer, S. (2011) Long-term contribution of human bone marrow mesenchymal stromal cells to skeletal muscle regeneration in mice. Cell Transplant. 20, 217-231. <https://doi.org/10.3727/096368910X522117>
20. Dezawa, M., Ishikawa, H., Itokazu, Y., Yoshihara, T., Hoshino, M., Takeda, S., Ide, C., Nabeshima, Y. (2005) Bone marrow stromal cells generate muscle cells and repair muscle degeneration. Science 309, 314-317. <https://doi.org/10.1126/science.1110364>
21. Direkze, N. C., Hodivala-Dilke, K., Jeffery, R., Hunt, T., Poulsom, R., Oukrif, D., Alison, M. R., Wright, N. A. (2004) Bone marrow contribution to tumor-associated myofibroblasts and fibroblasts. Cancer Res. 64, 8492-8495. <https://doi.org/10.1158/0008-5472.CAN-04-1708>
22. Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D. J., Horwitz. E. (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8, 315-317. <https://doi.org/10.1080/14653240600855905>
23. Doyonnas, R., LaBarge, M. A., Sacco, A., Charlton, C., Blau, H. M. (2004) Hematopoietic contribution to skeletal muscle regeneration by myelomonocytic precursors. Proc. Natl. Acad. Sci. USA 101, 13507-13512. <https://doi.org/10.1073/pnas.0405361101>
24. Dreyfus, P. A., Chretien, F., Chazaud, B., Kirova, Y., Caramelle, P., Garcia, L., Butler-Browne, G., Gherardi, R. K. (2004) Adult bone marrow-derived stem cells in muscle connective tissue and satellite cell niches. Am. J. Pathol. 164, 773-779. <https://doi.org/10.1016/S0002-9440(10)63165-3>
25. Dumont, N., Frenette, J. (2010) Macrophages protect against muscle atrophy and promote muscle recovery in vivo and in vitro: a mechanism partly dependent on the insulin-like growth factor-1 signaling molecule. Am. J. Pathol. 176, 2228-2235. <https://doi.org/10.2353/ajpath.2010.090884>
26. Ferrari, G., Cusella-De Angelis, G., Coletta, M., Paolucci, E., Stornaiuolo, A., Cossu, G. Mavilio, F. (1998) Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279, 1528-1530. <https://doi.org/10.1126/science.279.5356.1528>
27. Fiore, D., Judson, R. N., Low, M., Lee, S., Zhang, E., Hopkins, C., Xu, P., Lenzi, A., Rossi, F. M., Lemos, D. R. (2016) Pharmacological blockage of fibro/adipogenic progenitor expansion and suppression of regenerative fibrogenesis is associated with impaired skeletal muscle regeneration. Stem Cell Res. 17, 161-169. <https://doi.org/10.1016/j.scr.2016.06.007>
28. Formicola, L., Marazzi, G., Sassoon, D. A. (2014) The extraocular muscle stem cell niche is resistant to ageing and disease. Front. Aging Neurosci. 6, 328. <https://doi.org/10.3389/fnagi.2014.00328>
29. Friedenstein, A. J., Piatetzky-Shapiro, I. I., Petrakova, K. V. (1966) Osteogenesis in transplants of bone marrow cells. J. Embryol. Exp. Morphol. 16, 381-390.
30. Galli, D., Vitale, M., Vaccarezza, M. (2014) Bone marrowderived mesenchymal cell differentiation toward myogenic lineages: facts and perspectives. Biomed Res. Int. 2014, 762695. <https://doi.org/10.1155/2014/762695>
31. Heredia, J. E., Mukundan, L., Chen, F. M., Mueller, A. A., Deo, R. C., Locksley, R. M., Rando, T. A., Chawla, A. (2013) Type 2 innate signals stimulate fibro/adipogenic progenitors to facilitate muscle regeneration. Cell 153, 376-388. <https://doi.org/10.1016/j.cell.2013.02.053>
32. Joe, A. W., Yi, L., Natarajan, A., Le Grand, F., So, L., Wang, J., Rudnicki, M. A., Rossi, F. M. (2010) Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat. Cell Biol. 12, 153-163. <https://doi.org/10.1038/ncb2015>
33. Kurashige, M., Kohara, M., Ohshima, K., Tahara, S., Hori, Y., Nojima, S., Wada, N., Ikeda, J. I., Miyamura, K., Ito, M., Morii, E. (2018) Origin of cancer-associated fibroblasts and tumor-associated macrophages in humans after sexmismatched bone marrow transplantation. Commun. Biol. 1, 131. <https://doi.org/10.1038/s42003-018-0137-0>
34. LaBarge, M. A., Blau, H. M. (2002) Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury. Cell 111, 589-601. <https://doi.org/10.1016/S0092-8674(02)01078-4>
35. Latroche, C., Weiss-Gayet, M., Muller, L., Gitiaux, C., Leblanc, P., Liot, S., Ben-Larbi, S., Abou-Khalil, R., Verger, N., Bardot, P., Magnan, M., Chrétien, F., Mounier, R., Germain, S., Chazaud, B. (2017) Coupling between myogenesis and angiogenesis during skeletal muscle regeneration is stimulated by restorative macrophages. Stem Cell Reports 12, 2018-2033. <https://doi.org/10.1016/j.stemcr.2017.10.027>
36. Lescaudron, L., Peltékian, E., Fontaine-Pérus, J., Paulin, D., Zampieri, M., Garcia, L., Parrish, E. (1999) Blood borne macrophages are essential for the triggering of muscle regeneration following muscle transplant. Neuromuscul. Disord. 9, 72-80. <https://doi.org/10.1016/S0960-8966(98)00111-4>
37. Liu, X., Liu, Y., Zhao, L., Zeng, Z., Xiao, W., Chen, P. (2017) Macrophage depletion impairs skeletal muscle regeneration: The roles of regulatory factors for muscle regeneration. Cell Biol. Int. 41, 228-238. <https://doi.org/10.1002/cbin.10705>
38. Mashinchian, O., Pisconti, A., Le Moal E., Bentzinger C. F. (2018) The muscle stem cell niche in health and disease. Curr. Top. Dev. Biol. 126, 23-65. <https://doi.org/10.1016/bs.ctdb.2017.08.003>
39. Mauro, A. (1961) Satellite cell of skeletal muscle fibers. J. Biophys. Biochem. Cytol. 9, 493-495. <https://doi.org/10.1083/jcb.9.2.493>
40. Mitchell, K. J., Pannérec, A., Cadot, B., Parlakian, A., Besson, V., Gomes, E. R., Marazzi, G., Sassoon D. A. (2010) Identification and characterization of a non-satellite cell muscle resident progenitor during postnatal development. Nat. Cell Biol. 12, 257-266. <https://doi.org/10.1038/ncb2025>
41. Murphy, M. M., Lawson, J. A., Mathew, S. J., Hutcheson, D. A., Kardon, G. (2011) Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration. Development 138, 3625-3637. <https://doi.org/10.1242/dev.064162>
42. Ochoa, O., Sun, D., Reyes-Reyna, S. M., Waite, L. L., Michalek, J. E., McManus, L. M., Shireman, P. K. (2007) Delayed angiogenesis and VEGF production in CCR2-/- mice during impaired skeletal muscle regeneration. Am. J. Physiol. Regul. Integr. Comp. Physiol. 293, 651-661. <https://doi.org/10.1152/ajpregu.00069.2007>
43. Palermo, A. T., Labarge, M. A., Doyonnas, R., Pomerantz, J., Blau, H. M. (2005) Bone marrow contribution to skeletal muscle: a physiological response to stress. Dev. Biol. 279, 336-344. <https://doi.org/10.1016/j.ydbio.2004.12.024>
44. Pannérec, A., Formicola, L., Besson, V., Marazzi, G., Sassoon, D. A. (2013) Defining skeletal muscle resident progenitors and their cell fate potentials. Development 140, 2879-2891. <https://doi.org/10.1242/dev.089326>
45. Popescu, L. M., Manole, E., Serboiu, C. S., Manole, C. G., Suciu, L. C., Gherghiceanu, M., Popescu, B. O. (2011) Identification of telocytes in skeletal muscle interstitium: implication for muscle regeneration. J. Cell. Mol. Med. 15, 1379-1392. <https://doi.org/10.1111/j.1582-4934.2011.01330.x>
46. Sacco, A., Doyonnas, R., LaBarge, M. A., Hammer, M. M., Kraft, P., Blau, H.M. (2005) IGF-I increases bone marrow contribution to adult skeletal muscle and enhances the fusion of myelomonocytic precursors. J. Cell Biol. 171, 483-492. <https://doi.org/10.1083/jcb.200506123>
47. Segawa, M., Fukada, S., Yamamoto, Y., Yahagi, H., Kanematsu, M., Sato, M., Ito, T., Uezumi, A., Hayashi, S., Miyagoe- Suzuki, Y., Takeda, S., Tsujikawa, K., Yamamoto, H. (2008) Suppression of macrophage functions impairs skeletal muscle regeneration with severe fibrosis. Exp. Cell. Res. 314, 3232-3244. <https://doi.org/10.1016/j.yexcr.2008.08.008>
48. Suciu, L.C., Popescu, B. O., Kostin, S., Popescu, L. M. (2012) Platelet-derived growth factor receptor-β-positive telocytes in skeletal muscle interstitium. J. Cell. Mol. Med. 16, 701-707. <https://doi.org/10.1111/j.1582-4934.2011.01505.x>
49. Tavassoli, M., Friedenstein, A. (1983) Hemopoietic stromal microenvironment. Am. J. Hematol. 15, 195-203. <https://doi.org/10.1002/ajh.2830150211>
50. Wakitani, S., Saito, T., Caplan, A. I. (1995) Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve 18, 1417-1426. <https://doi.org/10.1002/mus.880181212>
51. Yin, H., Price, F., Rudnicki, M. A. (2013) Satellite cells and the muscle stem cell niche. Physiol. Rev. 93, 23-67. <https://doi.org/10.1152/physrev.00043.2011>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Submissions

Archive