Fol. Biol. 2019, 65, 1-10
https://doi.org/10.14712/fb2019065010001
Fluorescent Probes for Monitoring Cholesterol Trafficking in Cells
References
1. 2007) The roles of different pathways in the release of cholesterol from macrophages. J. Lipid Res. 48, 2453-2462.
< , M. P., Zimetti, F., Billheimer, J. T., Wang, N., Rader, D. J., Phillips, M. C., Rothblat, G. H. (https://doi.org/10.1194/jlr.M700274-JLR200>
2. 2017) Intracellular cholesterol trafficking and impact in neurodegeneration. Front. Mol. Neurosci. 10, 382.
< , F., Garcia-Ruiz, C., Fernandez-Checa, J. C. (https://doi.org/10.3389/fnmol.2017.00382>
3. 2011) Filipin recognizes both GM1 and cholesterol in GM1 gangliosidosis mouse brain. J. Lipid Res. 52, 1345-1351.
< , J. R., Heinecke, K. A., Seyfried, T. N. (https://doi.org/10.1194/jlr.M012633>
4. 2002) Dimers of dipyrrometheneboron difluoride (BODIPY) with light spectroscopic applications in chemistry and biology. J. Am. Chem. Soc. 124, 196-204.
< , F., Mikhalyov, P. I., Hagglof, R., Wortmann, T. N., Johansson, L. B. A. (https://doi.org/10.1021/ja010983f>
5. 2018) Retrospective on cholesterol homeostasis: the central role of Scap. Annu. Rev. Biochem. 87, 783-807.
< , M. S., A. Radhakrishnan, A., Goldstein, J. L. (https://doi.org/10.1146/annurev-biochem-062917-011852>
6. 2013) 22-NBD-cholesterol as a novel fluorescent substrate for cholesterol-converting oxidoreductases. J. Steroid Biochem. Mol. Biol. 134, 59-66.
< , Y. V., Bialevich, K. I., Edimecheva, I. P., Kostsin, D. G., Rudaya, E. V., Slobozhanina, E. I., Shkumatov, V. M. (https://doi.org/10.1016/j.jsbmb.2012.09.035>
7. 2003) Relationship between cholesterol trafficking and signaling in rafts and caveolae. Biochim. Biophys. Acta 1610, 219-228.
< , C. J., Fielding, P. E. (https://doi.org/10.1016/S0005-2736(03)00020-8>
8. 2000) High density lipoproteinmediated cholesterol uptake and targeting to lipid droplets in intact L-cell fibroblasts. A single- and multiphoton fluorescence approach. J. Biol. Chem. 275, 12769-12780.
< , A., Petrescu, A., Atshaves, B. P., So, P. T., Gratton, E., Serrero, G., Schroeder, F. (https://doi.org/10.1074/jbc.275.17.12769>
9. 2007) Cholesterol reporter molecules. Biosci. Rep. 27, 335-358.
< , G., Gehrig-Burger, K. (https://doi.org/10.1007/s10540-007-9060-1>
10. 2011) Probes for studying cholesterol binding and cell biology. Steroids 76, 216-231.
< , G., Gehrig-Burger, K. (https://doi.org/10.1016/j.steroids.2010.11.001>
11. 2006) Protein sensors for membrane sterols. Cell 124, 35-46.
< , J. L., DeBose-Boyd, R. A., Brown, M. S. (https://doi.org/10.1016/j.cell.2005.12.022>
12. 2009) The LDL receptor. Arterioscler. Thromb. Vasc. Biol. 29, 431-438.
< , J. L., Brown, M. S. (https://doi.org/10.1161/ATVBAHA.108.179564>
13. 2002) Vesicular and non-vesicular sterol transport in living cells. The endocytic recycling compartment is a major sterol storage organelle. J. Biol. Chem. 277, 609-617.
< , M., Lin, S. X., Karylowski, O. J., Wustner, D., McGraw, T. E., Maxfield, F. R. (https://doi.org/10.1074/jbc.M108861200>
14. 2013) Organization and function of membrane contact sites. Biochim. Biophys. Acta 1833, 2526-2541.
< , S. C., Kanfer, G., Kolar, K., Lang, A., Michel, A. H., Kornmann, B. (https://doi.org/10.1016/j.bbamcr.2013.01.028>
15. 2014) A novel alkyne cholesterol to trace cellular cholesterol metabolism and localization. J. Lipid Res. 55, 583-591.
< , K., Thiele, C., Schott, H. F., Gaebler, A., Schoene, M., Kiver, Y., Friedrichs, S., Lutjohann, D., Kuerschner, L. (https://doi.org/10.1194/jlr.D044727>
16. 2008) BODIPY-cholesterol: a new tool to visualize sterol trafficking in living cells and organisms. Traffic 9, 1839-1849.
< , M., Uronen, R. L., Repakova, J., Salonen, E., Vattulainen, I., Panula, P., Li, Z., Bittman, R., Ikonen, E. (https://doi.org/10.1111/j.1600-0854.2008.00801.x>
17. 2016) Use of BODIPY-cholesterol (TF-Chol) for visualizing lysosomal cholesterol accumulation. Traffic 17, 1054-1057.
< , M., Sezgin, E., Eggeling, C., Ikonen, E. (https://doi.org/10.1111/tra.12414>
18. 2010) Cellular cholesterol delivery, intracellular processing and utilization for biosynthesis of steroid hormones. Nutr. Metab. (Lond) 7, 47.
< , J., Z., Zhang, Z., Shen, W. J., Azhar, S. (https://doi.org/10.1186/1743-7075-7-47>
19. 2010) Use of dansylcholestanol as a probe of cholesterol behavior in membranes of living cells. J. Lipid Res. 51, 1157-1172.
< , H., McIntosh, A. L., Atshaves, B. P., Ohno-Iwashita, Y., Kier, A. B., Schroeder, F. (https://doi.org/10.1194/jlr.M003244>
20. 2015) Cholesterol trafficking and distribution. Essays Biochem. 57, 43-55.
, D. B., Maxfield, F. R. (
21. 2008) Cellular cholesterol trafficking and compartmentalization. Nat. Rev. Mol. Cell Biol. 9, 125-138.
< , E. (https://doi.org/10.1038/nrm2336>
22. 2018) Mechanisms of cellular cholesterol compartmentalization: recent insights. Curr. Opin. Cell Biol. 53, 77-83.
< , E. (https://doi.org/10.1016/j.ceb.2018.06.002>
23. 2017) Continuous transport of a small fraction of plasma membrane cholesterol to endoplasmic reticulum regulates total cellular cholesterol. Elife 6, e25466.
< , R. E., Radhakrishnan, A. (https://doi.org/10.7554/eLife.25466>
24. 1997) A biotinylated perfringolysin O derivative: a new probe for detection of cell surface cholesterol. Biochim. Biophys. Acta 1327, 222-230.
< , M., Morita, I., Fukuda, M., Murota, S., Ando, S., Ohno-Iwashita, Y. (https://doi.org/10.1016/S0005-2736(97)00061-8>
25. 2015) Bioorthogonal probes for imaging sterols in cells. Chembiochem. 16, 611-617.
< , C. Y., Nedelcu, D., Lopez, L. V., Samarakoon, T. N., Welti, R., Salic, A. (https://doi.org/10.1002/cbic.201402715>
26. 1994) Bile acid synthesis from cholesterol: regulatory and auxiliary pathways. FASEB J. 8, 1308-1311.
< , N. B. (https://doi.org/10.1096/fasebj.8.15.8001744>
27. 2007) Cholesterol transport from liposomal delivery vehicles. Biomaterials 28, 4311-4320.
< , A., Ferrara, K. W. (https://doi.org/10.1016/j.biomaterials.2007.06.008>
28. 2018) Heterocyclic sterol probes for live monitoring of sterol trafficking and lysosomal storage disorders. Sci. Rep. 8, 14428.
< , J., Jurasek, M., Krcova, L., Dolensky, B., Novotny, I., Dusek, M., Rottnerova, Z., Kahle, M., Drasar, P., Bartunek, P., Kral, V. (https://doi.org/10.1038/s41598-018-32776-6>
29. 1984) Localization of unesterified cholesterol in human atherosclerotic lesions. Demonstration of filipinpositive, oil-red-O-negative particles. Am. J. Pathol. 114, 201-208.
, H. S. (
30. 1999) Regulation of endoplasmic reticulum cholesterol by plasma membrane cholesterol. J. Lipid Res. 40, 2264-2270.
< , Y., Ye, J., Rigney, M., Steck, T. L. (https://doi.org/10.1016/S0022-2275(20)32101-5>
31. 2016) Active membrane cholesterol as a physiological effector. Chem. Phys. Lipids 199, 74-93.
< , Y., Steck, T. L. (https://doi.org/10.1016/j.chemphyslip.2016.02.003>
32. 2012) Nonvesicular lipid transfer from the endoplasmic reticulum. Cold Spring Harb. Perspect. Biol. 4, a013300.
, S. (
33. 2011) Raft domains of variable properties and compositions in plasma membrane vesicles. Proc. Natl. Acad. Sci. USA 108, 11411-11416.
< , I., Grzybek, M., Simons, K. (https://doi.org/10.1073/pnas.1105996108>
34. 2016) The continuing mystery of lipid rafts. J. Mol. Biol. 428, 4749-4764.
< , I., Veatch, S. (https://doi.org/10.1016/j.jmb.2016.08.022>
35. 2006) First synthesis of free cholesterol-BODIPY conjugates. J. Org. Chem. 71, 1718-1721.
< , Z., Mintzer, E., Bittman, R. (https://doi.org/10.1021/jo052029x>
36. 2018) Intracellular and plasma membrane events in cholesterol transport and homeostasis. J. Lipids 2018, 3965054.
< , D. Y., Savushkin, E. V., Dergunov, A. D. (https://doi.org/10.1155/2018/3965054>
37. 2010) Cholesterol involvement in the pathogenesis of neurodegenerative diseases. Mol. Cell. Neurosci. 43, 33-42.
< , J. P., Tang, Y., Zhou, S., Toh, B. H., McLean, C., Li, H. (https://doi.org/10.1016/j.mcn.2009.07.013>
38. 2014) Synthesis of cholesterol analogues bearing BODIPY fluorophores by Suzuki or Liebeskind-Srogl cross-coupling and evaluation of their potential for visualization of cholesterol pools. Chembiochem. 15, 2087-2096.
< , Z., Thacker, S. G., Fernandez-Castillejo, S., Neufeld, E. B., Remaley, A. T., Bittman, R. (https://doi.org/10.1002/cbic.201402042>
39. 2001) Exclusion of a cholesterol analog from the cholesterol-rich phase in model membranes. Biochim. Biophys. Acta-Biomembr. 1511, 236-243.
< , L. M. S., Fedorov, A., Prieto, M. (https://doi.org/10.1016/S0005-2736(01)00269-3>
40. 2018) Intracellular cholesterol transport by sterol transfer proteins at membrane contact sites. Trends Biochem. Sci. 44, 273-292.
< , J., Jiang, L. Y., Yang, H., Song, B. L. (https://doi.org/10.1016/j.tibs.2018.10.001>
41. 2014) Molecular probes to visualize the location, organization and dynamics of lipids. J. Cell Sci. 127, 4801-4812.
, M., Fairn, G. D. (
42. 2008) Use of Bodipy-labeled sphingolipid and cholesterol analogs to examine membrane microdomains in cells. Histochem. Cell. Biol. 130, 819-832.
< , D. L., Bittman, R., Pagano, R. E. (https://doi.org/10.1007/s00418-008-0509-5>
43. 2002) Intracellular cholesterol transport. J. Clin. Invest. 110, 891-898.
< , F. R., Wustner, D. (https://doi.org/10.1172/JCI0216500>
44. 2012) Analysis of cholesterol trafficking with fluorescent probes. Methods Cell. Biol. 108, 367-393.
< , F. R., Wustner, D. (https://doi.org/10.1016/B978-0-12-386487-1.00017-1>
45. 2008) Fluorescence techniques using dehydroergosterol to study cholesterol trafficking. Lipids 43, 1185-1208.
< , A. L., Atshaves, B. P., Huang, H., Gallegos, A. M., Kier, A. B., Schroeder, F. (https://doi.org/10.1007/s11745-008-3194-1>
46. 2011) STARD4 abundance regulates sterol transport and sensing. Mol. Biol. Cell 22, 4004-4015.
< , B., Pipalia, N. H., Lund, F. W., Ramlall, T. F., Sokolov, A., Eliezer, D., Maxfield, F. R. (https://doi.org/10.1091/mbc.e11-04-0372>
47. 2013) Insights into the mechanisms of sterol transport between organelles. Cell. Mol. Life Sci. 70, 3405-3421.
< , B., Antonny, B., Drin, D. (https://doi.org/10.1007/s00018-012-1247-3>
48. 2013) Organization of fluorescent cholesterol analogs in lipid bilayers - lessons from cyclodextrin extraction. Biochim. Biophys. Acta 1828, 1822-1828.
< , S., Meyer, T., Scheidt, H. A., Schwarzer, R., Thomas, L., Marek, M., Szente, L., Bittman, R., Herrmann, A., Gunther Pomorski, T., Huster, D. Muller, P. (https://doi.org/10.1016/j.bbamem.2013.04.002>
49. 2011) Fluorescent probes for superresolution imaging of lipid domains on the plasma membrane. Chem. Sci. 2, 1548-1553.
< , H., Abe, M., Dedecker, P., Makino, A., Rocha, S., Ohno-Iwashita, Y., Hofkens, J., Kobayashi, T., Miyawaki, A. (https://doi.org/10.1039/c1sc00169h>
50. 2018) Live-cell imaging of new polyene sterols for improved analysis of intracellular cholesterol transport. J. Microsc. 271, 36-48.
< , M., Solanko, K. A., Szomek, M., Hansen, S. K., Dupont, A., Nabo, L. J., Kongsted, J., Wustner, D. (https://doi.org/10.1111/jmi.12691>
51. 1998) Cholesterol distribution in living cells: fluorescence imaging using dehydroergosterol as a fluorescent cholesterol analog. Biophys. J. 75, 1915-1925.
< , S., Zha, X., Tabas, I., Maxfield, F. R. (https://doi.org/10.1016/S0006-3495(98)77632-5>
52. 2014) Stuck in traffic: an emerging theme in diseases of the nervous system. Trends Neurosci. 37, 66-76.
< , J., van der Kant, R. (https://doi.org/10.1016/j.tins.2013.11.006>
53. 2011) Cholesterol-binding toxins and anti-cholesterol antibodies as structural probes for cholesterol localization. Subcell. Biochem. 51, 597-621.
< , Y., Shimada, Y., Hayashi, M., Iwamoto, M., Iwashita, S., Inomata, M. (https://doi.org/10.1007/978-90-481-8622-8_22>
54. 1999) Membrane cholesterol modulates galanin-GalR2 interaction. Biochemistry 38, 12003-12011.
< , L., Graziano, M., Wang, S. (https://doi.org/10.1021/bi990227a>
55. 2007) The multiple faces of caveolae. Nat. Rev. Mol. Cell. Biol. 8, 185-194.
< , R. G., Simons, K. (https://doi.org/10.1038/nrm2122>
56. 2014). Molecular mechanisms of cellular cholesterol efflux. J. Biol. Chem. 289, 24020-24029.
< , M. C. (https://doi.org/10.1074/jbc.R114.583658>
57. 2006) Rafts defined: a report on the Keystone Symposium on lipid rafts and cell function. J. Lipid Res. 47, 1597-1598.
< , L. J. (https://doi.org/10.1194/jlr.E600002-JLR200>
58. 2014) Dehydroergosterol as an analogue for cholesterol: why it mimics cholesterol so well - or does it? J. Phys. Chem. B 118, 7345-7357.
< , M., Rog, T., Mikkeli, R., Vattulainen, L., Solanko, L. M., Wustner, D., List N. H., Kongsted, J., Karttunen, M. (https://doi.org/10.1021/jp406883k>
59. 2016) DHCR7: a vital enzyme switch between cholesterol and vitamin D production. Prog. Lipid Res. 64, 138-151.
< , A. V., Luu, W., Li, D., Sharpe, L. J., Brown, A. J. (https://doi.org/10.1016/j.plipres.2016.09.003>
60. 2007) Non-vesicular sterol transport in cells. Prog. Lipid Res. 46, 297-314.
< , W. A. (https://doi.org/10.1016/j.plipres.2007.06.002>
61. 2013) Behavior of fluorescent cholesterol analogues dehydroergosterol and cholestatrienol in lipid bilayers: a molecular dynamics study. J. Phys. Chem. B 117, 5806-5819.
< , J. R., do Canto, A. M., Carvalho, A. J. Ramalho, J. P., Loura, L. M. (https://doi.org/10.1021/jp312026u>
62. 2003) The enzymes, regulation, and genetics of bile acid synthesis. Annu. Rev. Biochem. 72, 137-174.
< , D. W. (https://doi.org/10.1146/annurev.biochem.72.121801.161712>
63. 2003) The potential of fluorescent and spin-labeled steroid analogs to mimic natural cholesterol. J. Biol. Chem. 278, 45563-45569.
< , H. A., Muller, P., Herrmann, A., Huster, D. (https://doi.org/10.1074/jbc.M303567200>
64. 1994) Filipinsensitive caveolae-mediated transport in endothelium: reduced transcytosis, scavenger endocytosis, and capillary permeability of select macromolecules. J. Cell. Biol. 127, 1217-1232.
< , J. E., Oh, P., Pinney, E., Allard, J. (https://doi.org/10.1083/jcb.127.5.1217>
65. 1984) Fluorescent sterols: probe molecules of membrane structure and function. Prog. Lipid Res. 23, 97-113.
< , F. (https://doi.org/10.1016/0163-7827(84)90009-2>
66. 2005) Clathrin-independent internalization of the human histamine H1-receptor in CHO-K1 cells. Br. J. Pharmacol. 146, 612-624.
< , T. J., Oakley, S. M., Hill, S. J. (https://doi.org/10.1038/sj.bjp.0706337>
67. 1983) Failure of filipin to detect cholesterol-rich domains in smooth muscle plasma membrane. Nature 303, 637-638.
< , N. J., Simons, H. L. (https://doi.org/10.1038/303637a0>
68. 2016) A comparative study on fluorescent cholesterol analogs as versatile cellular reporters. J. Lipid Res. 57, 299-309.
< , E., Can, F. B., Schneider, F., Clausen, M. P., Galiani, S., Stanly, T. A., Waithe, D., Colaco, A., Honigmann, A., Wustner, D., Platt, F., Eggeling, C. (https://doi.org/10.1194/jlr.M065326>
69. 2014) The ups and downs of cholesterol homeostasis. Trends Biochem. Sci. 39, 527-535.
< , L. J., Cook, E. C., Zelcer, N., Brown, A. J. (https://doi.org/10.1016/j.tibs.2014.08.008>
70. 2002) The C-terminal domain of perfringolysin O is an essential cholesterol-binding unit targeting to cholesterolrich microdomains. Eur. J. Biochem. 269, 6195-6203.
< , Y., Maruya, M., Iwashita, S., Ohno-Iwashita, Y. (https://doi.org/10.1046/j.1432-1033.2002.03338.x>
71. 1997) Functional rafts in cell membranes. Nature 387, 569-572.
< , K., Ikonen, E. (https://doi.org/10.1038/42408>
72. 2011) Membrane organization and lipid rafts. Cold Spring Harb. Perspect. Biol. 3, a004697.
, K., Sampaio, J. L. (
73. 2015) Fluorescent sterols and cholesteryl esters as probes for intracellular cholesterol transport. Lipid Insights 8, 95-114.
, K. A., Modzel, M., Solanko, L. M., Wustner, D. (
74. 2013) Membrane orientation and lateral diffusion of BODIPY-cholesterol as a function of probe structure. Biophys. J. 105, 2082-2092.
< , L. M., Honigmann, A., Midtiby, H. S., Lund, F. W., Brewer, J. R., Dekaris, V., Bittman, R., Eggeling, C., Wustner, D. (https://doi.org/10.1016/j.bpj.2013.09.031>
75. 2010) Cell cholesterol homeostasis: mediation by active cholesterol. Trends Cell Biol. 20, 680-687.
< , T. L., Lange, Y. (https://doi.org/10.1016/j.tcb.2010.08.007>
76. 2003) Biotinylated θ-toxin derivative as a probe to examine intracellular cholesterol-rich domains in normal and Niemann- Pick type C1 cells. J. Lipid Res. 44, 1033-1041.
< , S., Reid, P. C., Ohgami, N., Shimada, Y., Maue, R. A., Ninomiya, H., Ohno-Iwashita, Y., Chang, T. Y. (https://doi.org/10.1194/jlr.D200036-JLR200>
77. 2018) Structural basis of sterol recognition and nonvesicular transport by lipid transfer proteins anchored at membrane contact sites. Proc. Natl. Acad. Sci. USA 115, E856-E865.
, J., Manik, M. K., Im, Y. J. (
78. 2005). Seeing spots: complex phase behavior in simple membranes. Biochim. Biophys. Acta 1746, 172-185.
< , S. L., Keller, S. L. (https://doi.org/10.1016/j.bbamcr.2005.06.010>
79. 2003) Transport of plasma membrane-derived cholesterol and the function of Niemann-Pick C1 protein. FASEB J. 17, 782-784.
< , V., Chang, T. Y., Strauss, J. F. 3rd, Fahrenholz, F., Gimpl, G. (https://doi.org/10.1096/fj.02-0818fje>
80. 2011) Quantitative assessment of sterol traffic in living cells by dual labeling with dehydroergosterol and BODIPY-cholesterol. Chem. Phys. Lipids 164, 221-235.
< , D., Solanko, L., Sokol, E., Garvik, O., Li, Z., Bittman, R., Korte, T., Herrmann, A. (https://doi.org/10.1016/j.chemphyslip.2011.01.004>
81. 2015) How cholesterol interacts with proteins and lipids during its intracellular transport. Biochim. Biophys. Acta-Biomembr. 1848, 1908-1926.
< , D., Solanko, K. (https://doi.org/10.1016/j.bbamem.2015.05.010>
82. 2016) Potential of BODIPY-cholesterol for analysis of cholesterol transport and diffusion in living cells. Chem. Phys. Lipids 194, 12-28.
< , D., Lund, F. W., Rohrl, C., Stangl, H. (https://doi.org/10.1016/j.chemphyslip.2015.08.007>
83. 1985) Cholesterol and the cell membrane. Biochim. Biophys. Acta 822, 267-287.
< , P. L. (https://doi.org/10.1016/0304-4157(85)90011-5>