Fol. Biol. 2019, 65, 1-10

https://doi.org/10.14712/fb2019065010001

Fluorescent Probes for Monitoring Cholesterol Trafficking in Cells

Jarmila Králová1, V. Král2

1CZ-OPENSCREEN, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
2University of Chemistry and Technology, Prague, Czech Republic

Received January 2019
Accepted February 2019

References

1. Adorni, M. P., Zimetti, F., Billheimer, J. T., Wang, N., Rader, D. J., Phillips, M. C., Rothblat, G. H. (2007) The roles of different pathways in the release of cholesterol from macrophages. J. Lipid Res. 48, 2453-2462. <https://doi.org/10.1194/jlr.M700274-JLR200>
2. Arenas, F., Garcia-Ruiz, C., Fernandez-Checa, J. C. (2017) Intracellular cholesterol trafficking and impact in neurodegeneration. Front. Mol. Neurosci. 10, 382. <https://doi.org/10.3389/fnmol.2017.00382>
3. Arthur, J. R., Heinecke, K. A., Seyfried, T. N. (2011) Filipin recognizes both GM1 and cholesterol in GM1 gangliosidosis mouse brain. J. Lipid Res. 52, 1345-1351. <https://doi.org/10.1194/jlr.M012633>
4. Bergstrom, F., Mikhalyov, P. I., Hagglof, R., Wortmann, T. N., Johansson, L. B. A. (2002) Dimers of dipyrrometheneboron difluoride (BODIPY) with light spectroscopic applications in chemistry and biology. J. Am. Chem. Soc. 124, 196-204. <https://doi.org/10.1021/ja010983f>
5. Brown, M. S., A. Radhakrishnan, A., Goldstein, J. L. (2018) Retrospective on cholesterol homeostasis: the central role of Scap. Annu. Rev. Biochem. 87, 783-807. <https://doi.org/10.1146/annurev-biochem-062917-011852>
6. Faletrov, Y. V., Bialevich, K. I., Edimecheva, I. P., Kostsin, D. G., Rudaya, E. V., Slobozhanina, E. I., Shkumatov, V. M. (2013) 22-NBD-cholesterol as a novel fluorescent substrate for cholesterol-converting oxidoreductases. J. Steroid Biochem. Mol. Biol. 134, 59-66. <https://doi.org/10.1016/j.jsbmb.2012.09.035>
7. Fielding, C. J., Fielding, P. E. (2003) Relationship between cholesterol trafficking and signaling in rafts and caveolae. Biochim. Biophys. Acta 1610, 219-228. <https://doi.org/10.1016/S0005-2736(03)00020-8>
8. Frolov, A., Petrescu, A., Atshaves, B. P., So, P. T., Gratton, E., Serrero, G., Schroeder, F. (2000) High density lipoproteinmediated cholesterol uptake and targeting to lipid droplets in intact L-cell fibroblasts. A single- and multiphoton fluorescence approach. J. Biol. Chem. 275, 12769-12780. <https://doi.org/10.1074/jbc.275.17.12769>
9. Gimpl, G., Gehrig-Burger, K. (2007) Cholesterol reporter molecules. Biosci. Rep. 27, 335-358. <https://doi.org/10.1007/s10540-007-9060-1>
10. Gimpl, G., Gehrig-Burger, K. (2011) Probes for studying cholesterol binding and cell biology. Steroids 76, 216-231. <https://doi.org/10.1016/j.steroids.2010.11.001>
11. Goldstein, J. L., DeBose-Boyd, R. A., Brown, M. S. (2006) Protein sensors for membrane sterols. Cell 124, 35-46. <https://doi.org/10.1016/j.cell.2005.12.022>
12. Goldstein, J. L., Brown, M. S. (2009) The LDL receptor. Arterioscler. Thromb. Vasc. Biol. 29, 431-438. <https://doi.org/10.1161/ATVBAHA.108.179564>
13. Hao, M., Lin, S. X., Karylowski, O. J., Wustner, D., McGraw, T. E., Maxfield, F. R. (2002) Vesicular and non-vesicular sterol transport in living cells. The endocytic recycling compartment is a major sterol storage organelle. J. Biol. Chem. 277, 609-617. <https://doi.org/10.1074/jbc.M108861200>
14. Helle, S. C., Kanfer, G., Kolar, K., Lang, A., Michel, A. H., Kornmann, B. (2013) Organization and function of membrane contact sites. Biochim. Biophys. Acta 1833, 2526-2541. <https://doi.org/10.1016/j.bbamcr.2013.01.028>
15. Hofmann, K., Thiele, C., Schott, H. F., Gaebler, A., Schoene, M., Kiver, Y., Friedrichs, S., Lutjohann, D., Kuerschner, L. (2014) A novel alkyne cholesterol to trace cellular cholesterol metabolism and localization. J. Lipid Res. 55, 583-591. <https://doi.org/10.1194/jlr.D044727>
16. Holtta-Vuori, M., Uronen, R. L., Repakova, J., Salonen, E., Vattulainen, I., Panula, P., Li, Z., Bittman, R., Ikonen, E. (2008) BODIPY-cholesterol: a new tool to visualize sterol trafficking in living cells and organisms. Traffic 9, 1839-1849. <https://doi.org/10.1111/j.1600-0854.2008.00801.x>
17. Holtta-Vuori, M., Sezgin, E., Eggeling, C., Ikonen, E. (2016) Use of BODIPY-cholesterol (TF-Chol) for visualizing lysosomal cholesterol accumulation. Traffic 17, 1054-1057. <https://doi.org/10.1111/tra.12414>
18. Hu, J., Z., Zhang, Z., Shen, W. J., Azhar, S. (2010) Cellular cholesterol delivery, intracellular processing and utilization for biosynthesis of steroid hormones. Nutr. Metab. (Lond) 7, 47. <https://doi.org/10.1186/1743-7075-7-47>
19. Huang, H., McIntosh, A. L., Atshaves, B. P., Ohno-Iwashita, Y., Kier, A. B., Schroeder, F. (2010) Use of dansylcholestanol as a probe of cholesterol behavior in membranes of living cells. J. Lipid Res. 51, 1157-1172. <https://doi.org/10.1194/jlr.M003244>
20. Iaea, D. B., Maxfield, F. R. (2015) Cholesterol trafficking and distribution. Essays Biochem. 57, 43-55.
21. Ikonen, E. (2008) Cellular cholesterol trafficking and compartmentalization. Nat. Rev. Mol. Cell Biol. 9, 125-138. <https://doi.org/10.1038/nrm2336>
22. Ikonen, E. (2018) Mechanisms of cellular cholesterol compartmentalization: recent insights. Curr. Opin. Cell Biol. 53, 77-83. <https://doi.org/10.1016/j.ceb.2018.06.002>
23. Infante, R. E., Radhakrishnan, A. (2017) Continuous transport of a small fraction of plasma membrane cholesterol to endoplasmic reticulum regulates total cellular cholesterol. Elife 6, e25466. <https://doi.org/10.7554/eLife.25466>
24. Iwamoto, M., Morita, I., Fukuda, M., Murota, S., Ando, S., Ohno-Iwashita, Y. (1997) A biotinylated perfringolysin O derivative: a new probe for detection of cell surface cholesterol. Biochim. Biophys. Acta 1327, 222-230. <https://doi.org/10.1016/S0005-2736(97)00061-8>
25. Jao, C. Y., Nedelcu, D., Lopez, L. V., Samarakoon, T. N., Welti, R., Salic, A. (2015) Bioorthogonal probes for imaging sterols in cells. Chembiochem. 16, 611-617. <https://doi.org/10.1002/cbic.201402715>
26. Javitt, N. B. (1994) Bile acid synthesis from cholesterol: regulatory and auxiliary pathways. FASEB J. 8, 1308-1311. <https://doi.org/10.1096/fasebj.8.15.8001744>
27. Kheirolomoom, A., Ferrara, K. W. (2007) Cholesterol transport from liposomal delivery vehicles. Biomaterials 28, 4311-4320. <https://doi.org/10.1016/j.biomaterials.2007.06.008>
28. Kralova, J., Jurasek, M., Krcova, L., Dolensky, B., Novotny, I., Dusek, M., Rottnerova, Z., Kahle, M., Drasar, P., Bartunek, P., Kral, V. (2018) Heterocyclic sterol probes for live monitoring of sterol trafficking and lysosomal storage disorders. Sci. Rep. 8, 14428. <https://doi.org/10.1038/s41598-018-32776-6>
29. Kruth, H. S. (1984) Localization of unesterified cholesterol in human atherosclerotic lesions. Demonstration of filipinpositive, oil-red-O-negative particles. Am. J. Pathol. 114, 201-208.
30. Lange, Y., Ye, J., Rigney, M., Steck, T. L. (1999) Regulation of endoplasmic reticulum cholesterol by plasma membrane cholesterol. J. Lipid Res. 40, 2264-2270. <https://doi.org/10.1016/S0022-2275(20)32101-5>
31. Lange, Y., Steck, T. L. (2016) Active membrane cholesterol as a physiological effector. Chem. Phys. Lipids 199, 74-93. <https://doi.org/10.1016/j.chemphyslip.2016.02.003>
32. Lev, S. (2012) Nonvesicular lipid transfer from the endoplasmic reticulum. Cold Spring Harb. Perspect. Biol. 4, a013300.
33. Levental, I., Grzybek, M., Simons, K. (2011) Raft domains of variable properties and compositions in plasma membrane vesicles. Proc. Natl. Acad. Sci. USA 108, 11411-11416. <https://doi.org/10.1073/pnas.1105996108>
34. Levental, I., Veatch, S. (2016) The continuing mystery of lipid rafts. J. Mol. Biol. 428, 4749-4764. <https://doi.org/10.1016/j.jmb.2016.08.022>
35. Li, Z., Mintzer, E., Bittman, R. (2006) First synthesis of free cholesterol-BODIPY conjugates. J. Org. Chem. 71, 1718-1721. <https://doi.org/10.1021/jo052029x>
36. Litvinov, D. Y., Savushkin, E. V., Dergunov, A. D. (2018) Intracellular and plasma membrane events in cholesterol transport and homeostasis. J. Lipids 2018, 3965054. <https://doi.org/10.1155/2018/3965054>
37. Liu, J. P., Tang, Y., Zhou, S., Toh, B. H., McLean, C., Li, H. (2010) Cholesterol involvement in the pathogenesis of neurodegenerative diseases. Mol. Cell. Neurosci. 43, 33-42. <https://doi.org/10.1016/j.mcn.2009.07.013>
38. Liu, Z., Thacker, S. G., Fernandez-Castillejo, S., Neufeld, E. B., Remaley, A. T., Bittman, R. (2014) Synthesis of cholesterol analogues bearing BODIPY fluorophores by Suzuki or Liebeskind-Srogl cross-coupling and evaluation of their potential for visualization of cholesterol pools. Chembiochem. 15, 2087-2096. <https://doi.org/10.1002/cbic.201402042>
39. Loura, L. M. S., Fedorov, A., Prieto, M. (2001) Exclusion of a cholesterol analog from the cholesterol-rich phase in model membranes. Biochim. Biophys. Acta-Biomembr. 1511, 236-243. <https://doi.org/10.1016/S0005-2736(01)00269-3>
40. Luo, J., Jiang, L. Y., Yang, H., Song, B. L. (2018) Intracellular cholesterol transport by sterol transfer proteins at membrane contact sites. Trends Biochem. Sci. 44, 273-292. <https://doi.org/10.1016/j.tibs.2018.10.001>
41. Maekawa, M., Fairn, G. D. (2014) Molecular probes to visualize the location, organization and dynamics of lipids. J. Cell Sci. 127, 4801-4812.
42. Marks, D. L., Bittman, R., Pagano, R. E. (2008) Use of Bodipy-labeled sphingolipid and cholesterol analogs to examine membrane microdomains in cells. Histochem. Cell. Biol. 130, 819-832. <https://doi.org/10.1007/s00418-008-0509-5>
43. Maxfield, F. R., Wustner, D. (2002) Intracellular cholesterol transport. J. Clin. Invest. 110, 891-898. <https://doi.org/10.1172/JCI0216500>
44. Maxfield, F. R., Wustner, D. (2012) Analysis of cholesterol trafficking with fluorescent probes. Methods Cell. Biol. 108, 367-393. <https://doi.org/10.1016/B978-0-12-386487-1.00017-1>
45. McIntosh, A. L., Atshaves, B. P., Huang, H., Gallegos, A. M., Kier, A. B., Schroeder, F. (2008) Fluorescence techniques using dehydroergosterol to study cholesterol trafficking. Lipids 43, 1185-1208. <https://doi.org/10.1007/s11745-008-3194-1>
46. Mesmin, B., Pipalia, N. H., Lund, F. W., Ramlall, T. F., Sokolov, A., Eliezer, D., Maxfield, F. R. (2011) STARD4 abundance regulates sterol transport and sensing. Mol. Biol. Cell 22, 4004-4015. <https://doi.org/10.1091/mbc.e11-04-0372>
47. Mesmin, B., Antonny, B., Drin, D. (2013) Insights into the mechanisms of sterol transport between organelles. Cell. Mol. Life Sci. 70, 3405-3421. <https://doi.org/10.1007/s00018-012-1247-3>
48. Milles, S., Meyer, T., Scheidt, H. A., Schwarzer, R., Thomas, L., Marek, M., Szente, L., Bittman, R., Herrmann, A., Gunther Pomorski, T., Huster, D. Muller, P. (2013) Organization of fluorescent cholesterol analogs in lipid bilayers - lessons from cyclodextrin extraction. Biochim. Biophys. Acta 1828, 1822-1828. <https://doi.org/10.1016/j.bbamem.2013.04.002>
49. Mizuno, H., Abe, M., Dedecker, P., Makino, A., Rocha, S., Ohno-Iwashita, Y., Hofkens, J., Kobayashi, T., Miyawaki, A. (2011) Fluorescent probes for superresolution imaging of lipid domains on the plasma membrane. Chem. Sci. 2, 1548-1553. <https://doi.org/10.1039/c1sc00169h>
50. Modzel, M., Solanko, K. A., Szomek, M., Hansen, S. K., Dupont, A., Nabo, L. J., Kongsted, J., Wustner, D. (2018) Live-cell imaging of new polyene sterols for improved analysis of intracellular cholesterol transport. J. Microsc. 271, 36-48. <https://doi.org/10.1111/jmi.12691>
51. Mukherjee, S., Zha, X., Tabas, I., Maxfield, F. R. (1998) Cholesterol distribution in living cells: fluorescence imaging using dehydroergosterol as a fluorescent cholesterol analog. Biophys. J. 75, 1915-1925. <https://doi.org/10.1016/S0006-3495(98)77632-5>
52. Neefjes, J., van der Kant, R. (2014) Stuck in traffic: an emerging theme in diseases of the nervous system. Trends Neurosci. 37, 66-76. <https://doi.org/10.1016/j.tins.2013.11.006>
53. Ohno-Iwashita, Y., Shimada, Y., Hayashi, M., Iwamoto, M., Iwashita, S., Inomata, M. (2011) Cholesterol-binding toxins and anti-cholesterol antibodies as structural probes for cholesterol localization. Subcell. Biochem. 51, 597-621. <https://doi.org/10.1007/978-90-481-8622-8_22>
54. Pang, L., Graziano, M., Wang, S. (1999) Membrane cholesterol modulates galanin-GalR2 interaction. Biochemistry 38, 12003-12011. <https://doi.org/10.1021/bi990227a>
55. Parton, R. G., Simons, K. (2007) The multiple faces of caveolae. Nat. Rev. Mol. Cell. Biol. 8, 185-194. <https://doi.org/10.1038/nrm2122>
56. Phillips, M. C. (2014). Molecular mechanisms of cellular cholesterol efflux. J. Biol. Chem. 289, 24020-24029. <https://doi.org/10.1074/jbc.R114.583658>
57. Pike, L. J. (2006) Rafts defined: a report on the Keystone Symposium on lipid rafts and cell function. J. Lipid Res. 47, 1597-1598. <https://doi.org/10.1194/jlr.E600002-JLR200>
58. Pourmousa, M., Rog, T., Mikkeli, R., Vattulainen, L., Solanko, L. M., Wustner, D., List N. H., Kongsted, J., Karttunen, M. (2014) Dehydroergosterol as an analogue for cholesterol: why it mimics cholesterol so well - or does it? J. Phys. Chem. B 118, 7345-7357. <https://doi.org/10.1021/jp406883k>
59. Prabhu, A. V., Luu, W., Li, D., Sharpe, L. J., Brown, A. J. (2016) DHCR7: a vital enzyme switch between cholesterol and vitamin D production. Prog. Lipid Res. 64, 138-151. <https://doi.org/10.1016/j.plipres.2016.09.003>
60. Prinz, W. A. (2007) Non-vesicular sterol transport in cells. Prog. Lipid Res. 46, 297-314. <https://doi.org/10.1016/j.plipres.2007.06.002>
61. Robalo, J. R., do Canto, A. M., Carvalho, A. J. Ramalho, J. P., Loura, L. M. (2013) Behavior of fluorescent cholesterol analogues dehydroergosterol and cholestatrienol in lipid bilayers: a molecular dynamics study. J. Phys. Chem. B 117, 5806-5819. <https://doi.org/10.1021/jp312026u>
62. Russell, D. W. (2003) The enzymes, regulation, and genetics of bile acid synthesis. Annu. Rev. Biochem. 72, 137-174. <https://doi.org/10.1146/annurev.biochem.72.121801.161712>
63. Scheidt, H. A., Muller, P., Herrmann, A., Huster, D. (2003) The potential of fluorescent and spin-labeled steroid analogs to mimic natural cholesterol. J. Biol. Chem. 278, 45563-45569. <https://doi.org/10.1074/jbc.M303567200>
64. Schnitzer, J. E., Oh, P., Pinney, E., Allard, J. (1994) Filipinsensitive caveolae-mediated transport in endothelium: reduced transcytosis, scavenger endocytosis, and capillary permeability of select macromolecules. J. Cell. Biol. 127, 1217-1232. <https://doi.org/10.1083/jcb.127.5.1217>
65. Schroeder, F. (1984) Fluorescent sterols: probe molecules of membrane structure and function. Prog. Lipid Res. 23, 97-113. <https://doi.org/10.1016/0163-7827(84)90009-2>
66. Self, T. J., Oakley, S. M., Hill, S. J. (2005) Clathrin-independent internalization of the human histamine H1-receptor in CHO-K1 cells. Br. J. Pharmacol. 146, 612-624. <https://doi.org/10.1038/sj.bjp.0706337>
67. Severs, N. J., Simons, H. L. (1983) Failure of filipin to detect cholesterol-rich domains in smooth muscle plasma membrane. Nature 303, 637-638. <https://doi.org/10.1038/303637a0>
68. Sezgin, E., Can, F. B., Schneider, F., Clausen, M. P., Galiani, S., Stanly, T. A., Waithe, D., Colaco, A., Honigmann, A., Wustner, D., Platt, F., Eggeling, C. (2016) A comparative study on fluorescent cholesterol analogs as versatile cellular reporters. J. Lipid Res. 57, 299-309. <https://doi.org/10.1194/jlr.M065326>
69. Sharpe, L. J., Cook, E. C., Zelcer, N., Brown, A. J. (2014) The ups and downs of cholesterol homeostasis. Trends Biochem. Sci. 39, 527-535. <https://doi.org/10.1016/j.tibs.2014.08.008>
70. Shimada, Y., Maruya, M., Iwashita, S., Ohno-Iwashita, Y. (2002) The C-terminal domain of perfringolysin O is an essential cholesterol-binding unit targeting to cholesterolrich microdomains. Eur. J. Biochem. 269, 6195-6203. <https://doi.org/10.1046/j.1432-1033.2002.03338.x>
71. Simons, K., Ikonen, E. (1997) Functional rafts in cell membranes. Nature 387, 569-572. <https://doi.org/10.1038/42408>
72. Simons, K., Sampaio, J. L. (2011) Membrane organization and lipid rafts. Cold Spring Harb. Perspect. Biol. 3, a004697.
73. Solanko, K. A., Modzel, M., Solanko, L. M., Wustner, D. (2015) Fluorescent sterols and cholesteryl esters as probes for intracellular cholesterol transport. Lipid Insights 8, 95-114.
74. Solanko, L. M., Honigmann, A., Midtiby, H. S., Lund, F. W., Brewer, J. R., Dekaris, V., Bittman, R., Eggeling, C., Wustner, D. (2013) Membrane orientation and lateral diffusion of BODIPY-cholesterol as a function of probe structure. Biophys. J. 105, 2082-2092. <https://doi.org/10.1016/j.bpj.2013.09.031>
75. Steck, T. L., Lange, Y. (2010) Cell cholesterol homeostasis: mediation by active cholesterol. Trends Cell Biol. 20, 680-687. <https://doi.org/10.1016/j.tcb.2010.08.007>
76. Sugii, S., Reid, P. C., Ohgami, N., Shimada, Y., Maue, R. A., Ninomiya, H., Ohno-Iwashita, Y., Chang, T. Y. (2003) Biotinylated θ-toxin derivative as a probe to examine intracellular cholesterol-rich domains in normal and Niemann- Pick type C1 cells. J. Lipid Res. 44, 1033-1041. <https://doi.org/10.1194/jlr.D200036-JLR200>
77. Tong, J., Manik, M. K., Im, Y. J. (2018) Structural basis of sterol recognition and nonvesicular transport by lipid transfer proteins anchored at membrane contact sites. Proc. Natl. Acad. Sci. USA 115, E856-E865.
78. Veatch, S. L., Keller, S. L. (2005). Seeing spots: complex phase behavior in simple membranes. Biochim. Biophys. Acta 1746, 172-185. <https://doi.org/10.1016/j.bbamcr.2005.06.010>
79. Wiegand, V., Chang, T. Y., Strauss, J. F. 3rd, Fahrenholz, F., Gimpl, G. (2003) Transport of plasma membrane-derived cholesterol and the function of Niemann-Pick C1 protein. FASEB J. 17, 782-784. <https://doi.org/10.1096/fj.02-0818fje>
80. Wustner, D., Solanko, L., Sokol, E., Garvik, O., Li, Z., Bittman, R., Korte, T., Herrmann, A. (2011) Quantitative assessment of sterol traffic in living cells by dual labeling with dehydroergosterol and BODIPY-cholesterol. Chem. Phys. Lipids 164, 221-235. <https://doi.org/10.1016/j.chemphyslip.2011.01.004>
81. Wustner, D., Solanko, K. (2015) How cholesterol interacts with proteins and lipids during its intracellular transport. Biochim. Biophys. Acta-Biomembr. 1848, 1908-1926. <https://doi.org/10.1016/j.bbamem.2015.05.010>
82. Wustner, D., Lund, F. W., Rohrl, C., Stangl, H. (2016) Potential of BODIPY-cholesterol for analysis of cholesterol transport and diffusion in living cells. Chem. Phys. Lipids 194, 12-28. <https://doi.org/10.1016/j.chemphyslip.2015.08.007>
83. Yeagle, P. L. (1985) Cholesterol and the cell membrane. Biochim. Biophys. Acta 822, 267-287. <https://doi.org/10.1016/0304-4157(85)90011-5>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Submissions

Archive