Fol. Biol. 2019, 65, 11-23
https://doi.org/10.14712/fb2019065010011
Genes and Mechanisms Responsible for Expansion of Acute Myeloid Leukaemia Blasts
References
1. 2015) Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal. Nature 526, 126-130.
< , M., Kocherlakota, K. S., Murphy, M. M., Peyer, J. G., Oguro, H., Inra, C. N., Jaiyeola, C., Zhao, Z., Luby-Phelps, K., Morrison, S. J. (https://doi.org/10.1038/nature15250>
2. 2018) Immunotherapy for acute myeloid leukemia (AML): a potent alternative therapy. Biomed. Pharmacother. 97, 225-232.
< , D. O., Adokoh, C. K., Asante, D. B., Asiamah, E. A., Barnie, P. A., Bonsu, D. O. M., Kyei, F. (https://doi.org/10.1016/j.biopha.2017.10.100>
3. 2003) Survivin, versatile modulation of cell division and apoptosis in cancer. Oncogene 22, 8581-8589.
< , D. C. (https://doi.org/10.1038/sj.onc.1207113>
4. 2016) The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 127, 2391-2405.
< , D. A., Orazi, A., Hasserjian, R., Thiele, J., Borowitz, M. J., Le Beau, M. M., Bloomfield, C. D., Cazzola, M., Vardiman, J. W. (https://doi.org/10.1182/blood-2016-03-643544>
5. 1983) Partial deletion of the long arm of chromosome 16 and bone marrow eosinophilia in acute nonlymphocytic leukemia: a new association. Blood 61, 994-998.
< , D. C., Bloomfield, C. D. (https://doi.org/10.1182/blood.V61.5.994.994>
6. 2016) Harnessing the immune system in acute myeloid leukaemia. Crit. Rev. Oncol. Hematol. 103, 62-77.
< , R., Smyth, M. J., Lane, S. W. (https://doi.org/10.1016/j.critrevonc.2016.04.020>
7. 2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-297.
< , D. P. (https://doi.org/10.1016/S0092-8674(04)00045-5>
8. 2016) Niche heterogeneity in the bone marrow. Ann. N. Y. Acad. Sci. 1370, 82-96.
< , A., Frenette, P. S. (https://doi.org/10.1111/nyas.13016>
9. 2017) Runx1 structure and function in blood cell development. Adv. Exp. Med. Biol. 962, 65-81.
< , C., Levantini, E., Kouskoff, V., Lacaud, G. (https://doi.org/10.1007/978-981-10-3233-2_5>
10. 2009) TP53 gene mutation is frequent in patients with acute myeloid leukemia and complex karyotype, and is associated with very poor prognosis. Leukemia 23, 203-206.
< , D., Groves, M. J., Burnett, A. K., Patel, Y., Allen, C., Green, C., Gale, R. E., Hills, R., Linch, D. C. (https://doi.org/10.1038/leu.2008.173>
11. 2016) Nucleophosmin: from structure and function to disease development. BMC Mol. Biol. 17, 19.
< , J. K., Paquet, N., Adams, M. N., Boucher, D., Bolderson, E., O’Byrne, K. J., Richard, D. J. (https://doi.org/10.1186/s12867-016-0073-9>
12. 2018) The Warburg effect as a type B lactic acidosis in a patient with acute myeloid leukemia: a diagnostic challenge for clinicians. Front. Oncol. 8, 232.
< , C., Zerbib, Y., Delette, C., Marc, J., Gruson, B., Marolleau, J. P., Maizel, J. (https://doi.org/10.3389/fonc.2018.00232>
13. 2009) Identification of a novel type of ITD mutations located in nonjuxtamembrane domains of the FLT3 tyrosine kinase receptor. Blood 113, 4074-4077.
< , F., Schnittger, S., Grundler, R., Markova, B., Carius, B., Brecht, A., Duyster, J., Haferlach, T., Huber, C., Fischer, T. (https://doi.org/10.1182/blood-2007-11-125476>
14. 1996) Regulation and function of transcription factor GATA-1 during red blood cell differentiation. Development 122, 3839-3850.
< , K., Bartunek, P., Stengl, G., Lim, K. C., Beug, H., Engel, J. D., Zenke, M. (https://doi.org/10.1242/dev.122.12.3839>
15. 2018) Mutant NPM1 maintains the leukemic state through HOX expression. Cancer Cell 34, 499e9-512e9.
< , L., Gundry, M. C., Sorcini, D., Guzman, A. G., Huang, Y. H., Ramabadran, R., Gionfriddo, I., Mezzasoma, F., Milano, F., Nabet, B., Buckley, D. L., Kornblau, S. M., Lin, C. Y., Sportoletti, P., Martelli, M. P., Falini, B., Goodell, M. A. (https://doi.org/10.1016/j.ccell.2018.08.005>
16. 2018) Lineage restriction analyses in CHIP indicate myeloid bias for TET2 and multipotent stem cell origin for DNMT3A. Blood 132, 277-280.
< , M., Provost, S., Zada, Y. F., Bourgoin, V., Mollica, L., Dube, M. P., Busque, L. (https://doi.org/10.1182/blood-2018-01-829937>
17. 2015) Runx1 deficiency decreases ribosome biogenesis and confers stress resistance to hematopoietic stem and progenitor cells. Cell Stem Cell 17, 165-177.
< , X., Gao, L., Teng, L., Ge, J., Oo, Z. M., Kumar, A. R., Gilliland, D. G., Mason, P. J., Tan, K., Speck, N. A. (https://doi.org/10.1016/j.stem.2015.06.002>
18. 2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425, 841-846.
< , L. M., Adams, G. B., Weibrecht, K. W., Weber, J. M., Olson, D. P., Knight, M. C., Martin, R. P., Schipani, E., Divieti, P., Bringhurst, F. R., Milner, L. A., Kronenberg, H. M., Scadden, D. T. (https://doi.org/10.1038/nature02040>
19. 2017) Impact of FAB classification on predicting outcome in acute myeloid leukemia, not otherwise specified, patients undergoing allogeneic stem cell transplantation in CR1: an analysis of 1690 patients from the acute leukemia working party of EBMT. Am. J. Hematol. 92, 344-350.
< , J., Beohou, E., Labopin, M., Socie, G., Huynh, A., Volin, L., Cornelissen, J., Milpied, N., Gedde-Dahl, T., Deconinck, E., Fegueux, N., Blaise, D., Mohty, M., Nagler, A. (https://doi.org/10.1002/ajh.24640>
20. Cancer Genome Atlas Research, N., 2013). Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N. Engl. J. Med. 368, 2059-2074.
, T. J., Miller, C., Ding, L., Raphael, B. J., Mungall, A. J., Robertson, A., Hoadley, K., Triche, T. J., Jr., Laird, P. W., et al. (
21. 2015) Chronic FLT3- ITD signaling in acute myeloid leukemia is connected to a specific chromatin signature. Cell Rep. 12, 821-836.
< , P., James, S. R., Zacarias-Cabeza, J., Ptasinska, A., Imperato, M. R., Assi, S. A., Piper, J., Canestraro, M., Hoogenkamp, M., Raghavan, M., Loke, J., Akiki, S., Clokie, S. J., Richards, S. J., Westhead, D. R., Griffiths, M. J., Ott, S., Bonifer, C., Cockerill, P. N. (https://doi.org/10.1016/j.celrep.2015.06.069>
22. 2013) Molecular regulation of stem cell quiescence. Nat. Rev. Mol. Cell Biol. 14, 329-340.
< , T. H., Rando, T. A. (https://doi.org/10.1038/nrm3591>
23. 2017) Restoration of TET2 function blocks aberrant self-renewal and leukemia progression. Cell 170, 1079.e20-1095.e20.
< , L., Dolgalev, I., Wang, Y., Yoshimi, A., Martin, G. H., Wang, J., Ng, V., Xia, B., Witkowski, M. T., Mitchell- Flack, M., Grillo, I., Bakogianni, S., Ndiaye-Lobry, D., Martín, M. T., Guillamot, M., Banh, R. S, Xu, M., Figueroa, M. E., Dickins, R. A., Abdel-Wahab, O., Park, C. Y., Tsirigos, A., Neel, B. G., Aifantis, I. (https://doi.org/10.1016/j.cell.2017.07.032>
24. 2014) Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513, 559-563.
< , O. R., Chu, N. Q., Szabo, A. L., Chu, T., Rhebergen, A. M., Jairam, V., Cyrus, N., Brokowski, C. E., Eisenbarth, S. C., Phillips, G. M., Cline, G. W., Phillips, A. J., Medzhitov, R. (https://doi.org/10.1038/nature13490>
25. 2015) Haematopoietic and immune defects associated with GATA2 mutation. Br. J. Haematol. 169, 173-187.
< , M., Dickinson, R., Bigley, V. (https://doi.org/10.1111/bjh.13317>
26. 2008) Leukemic cells create bone marrow niches that disrupt the behavior of normal hematopoietic progenitor cells. Science 322, 1861-1865.
< , A., Amorim, M., Pontier, A. L., Wang, S., Jablonski, E., Sipkins, D. A. (https://doi.org/10.1126/science.1164390>
27. 2012) Early recognition of malignant lactic acidosis in clinical practice: report on 6 patients with haematological malignancies. Acta Clin. Belg. 67, 347-351.
, E. A., Benoit, D. D., Depuydt, P. O., Offner, F., Nollet, J., Vantilborgh, A. K., Steel, E., Noens, L. A., Decruyenaere, J. M. (
28. 2012) Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481, 457-462.
< , L., Saunders, T. L., Enikolopov, G., Morrison, S. J. (https://doi.org/10.1038/nature10783>
29. 2013) Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 495, 231-235.
< , L., Morrison, S. J. (https://doi.org/10.1038/nature11885>
30. 2013) Myeloid leukemia cells with a B7-2+ subpopulation provoke Th-cell responses and become immuno-suppressive through the modulation of B7 ligands. Eur. J. Immunol. 43, 747-757.
< , Y., Esendagli, G. (https://doi.org/10.1002/eji.201242814>
31. 1996) Expression of FLT3 receptor and response to FLT3 ligand by leukemic cells. Leukemia 10, 588-599.
, H. G. (
32. 2018) Inhibition of endosteal vascular niche remodeling rescues hematopoietic stem cell loss in AML. Cell Stem Cell 22, 64.e6-77.e6.
< , D., Hawkins, E. D., Akinduro, O., Ang, H., De Filippo, K., Kong, I. Y., Haltalli, M., Ruivo, N., Straszkowski, L., Vervoort, S. J., McLean, C., Weber, T. S., Khorshed, R., Pirillo, C., Wei, A., Ramasamy, S. K., Kusumbe, A. P., Duffy, K., Adams, R. H., Purton, L. E., Carlin, L. M., Lo Celso, C. (https://doi.org/10.1016/j.stem.2017.11.006>
33. 2016) Comprehensive mutational profiling of core binding factor acute myeloid leukemia. Blood 127, 2451-2459.
< , N., Marceau-Renaut, A., Boissel, N., Petit, A., Bucci, M., Geffroy, S., Lapillonne, H., Renneville, A., Ragu, C., Figeac, M., Celli-Lebras, K., Lacombe, C., Micol, J. B., Abdel-Wahab, O., Cornillet, P., Ifrah, N., Dombret, H., Leverger, G., Jourdan, E., Preudhomme, C. (https://doi.org/10.1182/blood-2015-12-688705>
34. 2013) DNA released by leukemic cells contributes to the disruption of the bone marrow microenvironment. Oncogene 32, 5201-5209.
< , M., Karafiat, V., Pajer, P., Kluzakova, E., Jarkovska, K., Pekova, S., Krutilkova, L., Dvorak, M. (https://doi.org/10.1038/onc.2012.553>
35. 2006) Long-term evolution and functional diversification in the members of the nucleophosmin/nucleoplasmin family of nuclear chaperones. Genetics 173, 1835-1850.
< , J. M., Frehlick, L. J., Ausio, J. (https://doi.org/10.1534/genetics.106.058990>
36. 2018) Impaired hematopoiesis and leukemia development in mice with a conditional knock-in allele of a mutant splicing factor gene U2af1. Proc. Natl. Acad. Sci. USA 115, E10437-E10446.
, D. L., Zhen, T., Durham, B., Ferrarone, J., Zhang, T., Garrett, L., Yoshimi, A., Abdel-Wahab, O., Bradley, R. K., Liu, P., Varmus, H. (
37. 1992) Mutations of the P53 gene in acute myeloid leukaemia. Br. J. Haematol. 80, 178-183.
< , P., Preudhomme, C., Quiquandon, I., Jonveaux, P., Lai, J. L., Vanrumbeke, M., Loucheux-Lefebvre, M. H., Bauters, F., Berger, R., Kerckaert, J. P. (https://doi.org/10.1111/j.1365-2141.1992.tb08897.x>
38. 2017) Cohesin mutations in myeloid malignancies. Trends Cancer 3, 282-293.
< , J. B., McNulty, M., Burke, M. J., Crispino, J. D., Rao, S. (https://doi.org/10.1016/j.trecan.2017.02.006>
39. 1996) Increased hepatic cell proliferation and lung abnormalities in mice deficient in CCAAT/ enhancer binding protein α. J. Biol. Chem. 271, 24753-24760.
< , P., Barlow, C., Kylefjord, H., Ahrlund-Richter, L., Xanthopoulos, K. G. (https://doi.org/10.1074/jbc.271.40.24753>
40. 2007) Type B lactic acidosis as a severe metabolic complication in lymphoma and leukemia: a case series from a single institution and literature review. Medicine (Baltimore) 86, 225-232.
< , A. S., Brandoff, D. E., Schiffman, F. J. (https://doi.org/10.1097/MD.0b013e318125759a>
41. 2001) MHC antigens and tumor escape from immune surveillance. Adv. Cancer Res. 83, 117-158.
< , F., Algarra, I. (https://doi.org/10.1016/S0065-230X(01)83005-0>
42. 2012) Mutations in ASXL1 are associated with poor prognosis across the spectrum of malignant myeloid diseases. J. Hematol. Oncol. 5, 12.
< , V., Brecqueville, M., Devillier, R., Murati, A., Mozziconacci, M. J., Birnbaum, D. (https://doi.org/10.1186/1756-8722-5-12>
43. 2015) Functional niche competition between normal hematopoietic stem and progenitor cells and myeloid leukemia cells. Stem Cells 33, 3635-3642.
< , C., Desmond, R., Feng, X., Bat, T., Chen, J., Heuston, E., Mizukawa, B., Mulloy, J. C., Bodine, D. M., Larochelle, A., Dunbar, C. E. (https://doi.org/10.1002/stem.2208>
44. 2011) Indoleamine 2,3-dioxygenase expression in human cancers: clinical and immunologic perspectives. Clin. Cancer Res. 17, 6985-6991.
< , J., Hanafi, L. A., Piccirillo, C. A., Lapointe, R. (https://doi.org/10.1158/1078-0432.CCR-11-1331>
45. 2005). Mutations in KIT and RAS are frequent events in pediatric core-binding factor acute myeloid leukemia. Leukemia 19, 1536-1542.
< , B. F., Zwaan, C. M., Miller, M., Zimmermann, M., Harlow, A., Meshinchi, S., Loonen, A. H., Hahlen, K., Reinhardt, D., Creutzig, U., Kaspers, G. J., Heinrich, M. C. (https://doi.org/10.1038/sj.leu.2403870>
46. 2008) Evi-1 is a critical regulator for hematopoietic stem cells and transformed leukemic cells. Cell Stem Cell 3, 207-220.
< , S., Yamamoto, G., Shimabe, M., Sato, T., Ichikawa, M., Ogawa, S., Chiba, S., Kurokawa, M. (https://doi.org/10.1016/j.stem.2008.06.002>
47. 2013). Transcription factor RUNX1 promotes survival of acute myeloid leukemia cells. J. Clin. Invest. 123, 3876-3888.
< , S., Schibler, J., Cunningham, L., Zhang, Y., Rao, Y., Nishimoto, N., Nakagawa, M., Olsson, A., Wunderlich, M., Link, K. A., Mizukawa, B., Grimes, H. L., Kurokawa, M., Liu, P. P., Huang, G., Mulloy, J. C. (https://doi.org/10.1172/JCI68557>
48. 1986) Homologous recognition of a promoter domain common to the MSV LTR and the HSV tk gene. Cell 44, 565-576.
< , B. J., Johnson, P. F., McKnight, S. L. (https://doi.org/10.1016/0092-8674(86)90266-7>
49. 2013) CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature 495, 227-230.
< , A., Hsu, Y. M., Day, R. B., Schuettpelz, L. G., Christopher, M. J., Borgerding, J. N., Nagasawa, T., Link, D. C. (https://doi.org/10.1038/nature11926>
50. 1992) WT1: a novel tumor suppressor gene inactivated in Wilms’ tumor. New Biol. 4, 97-106.
, D. A., Buckler, A. J. (
51. 2008) Mutations of the TP53 gene in acute myeloid leukemia are strongly associated with a complex aberrant karyotype. Leukemia 22, 1539-1541.
< , C., Dicker, F., Herholz, H., Schnittger, S., Kern, W., Haferlach, T. (https://doi.org/10.1038/leu.2008.143>
52. 2011) The inv(3) (q21q26)/t(3;3)(q21;q26) is frequently accompanied by alterations of the RUNX1, KRAS and NRAS and NF1 genes and mediates adverse prognosis both in MDS and in AML: a study in 39 cases of MDS or AML. Leukemia 25, 874-877.
< , C., Bacher, U., Haferlach, T., Dicker, F., Alpermann, T., Kern, W., Schnittger, S. (https://doi.org/10.1038/leu.2011.5>
53. 2016) Internal tandem duplication of FLT3 deregulates proliferation and differentiation and confers resistance to the FLT3 inhibitor AC220 by up-regulating RUNX1 expression in hematopoietic cells. Int. J. Hematol. 103, 95-106.
< , T., Abe, M., Onishi, C., Taketani, T., Yamaguchi, S., Fukuda, S. (https://doi.org/10.1007/s12185-015-1908-8>
54. 2011) Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333, 1300-1303.
< , S., Shen, L., Dai, Q., Wu, S. C., Collins, L. B., Swenberg, J. A., He, C., Zhang, Y. (https://doi.org/10.1126/science.1210597>
55. 2009) Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids. Cell Cycle 8, 1698-1710.
< , L. M., Tahiliani, M., Rao, A., Aravind, L. (https://doi.org/10.4161/cc.8.11.8580>
56. 2014) Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 371, 2488-2498.
< , S., Fontanillas, P., Flannick, J., Manning, A., Grauman, P. V., Mar, B. G., Lindsley, R. C., Mermel, C. H., Burtt, N., Chavez, A., Higgins, J. M., Moltchanov, V., Kuo, F. C., Kluk, M. J., Henderson, B., Kinnunen, L., Koistinen, H. A., Ladenvall, C., Getz, G., Correa, A.., Banahan, B. F., Gabriel, S., Kathiresan, S., Stringham, H. M., McCarthy, M. I., Boehnke, M., Tuomilehto, J., Haiman, C., Groop, L., Atzmon, G., Wilson, J. G., Neuberg, D., Altshuler, D., Ebert, B. L. (https://doi.org/10.1056/NEJMoa1408617>
57. 2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 13, 484-492.
< , P. A. (https://doi.org/10.1038/nrg3230>
58. 2017) The GATA factor revolution in hematology. Blood 129, 2092-2102.
< , K. R., Bresnick, E. H., Group, G. F. M. (https://doi.org/10.1182/blood-2016-09-687871>
59. 2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121, 1109-1121.
< , M. J., Yilmaz, O. H., Iwashita, T., Yilmaz, O. H., Terhorst, C., Morrison, S. J. (https://doi.org/10.1016/j.cell.2005.05.026>
60. 2015) Microenvironmental remodeling as a parameter and prognostic factor of heterogeneous leukemogenesis in acute myelogenous leukemia. Cancer Res. 75, 2222-2231.
< , J. A., Shim, J. S., Lee, G. Y., Yim, H. W., Kim, T. M., Kim, M., Leem, S. H., Lee, J. W., Min, C. K., Oh, I. H. (https://doi.org/10.1158/0008-5472.CAN-14-3379>
61. 2014) Lactic acidosis. N. Engl. J. Med. 371, 2309-2319.
< , J. A., Madias, N. E. (https://doi.org/10.1056/NEJMra1309483>
62. 2015) WT1 mutations are secondary events in AML, show varying frequencies and impact on prognosis between genetic subgroups. Leukemia 29, 660-667.
< , M. T., Alpermann, T., Bacher, U., Eder, C., Dicker, F., Ulke, M., Kuznia, S., Nadarajah, N., Kern, W., Haferlach, C., Schnittger, S. (https://doi.org/10.1038/leu.2014.243>
63. 2006) Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 442, 818-822.
< , A. V., Twomey, D., Feng, Z., Stubbs, M. C., Wang, Y., Faber, J., Levine, J. E., Wang, J., Hahn, W. C., Gilliland, D. G., Golub, T. R., Armstrong, S. A. (https://doi.org/10.1038/nature04980>
64. 2018) Acute myeloid leukemia transforms the bone marrow niche into a leukemia-permissive microenvironment through exosome secretion. Leukemia 32, 575-587.
< , B., Garcia, M., Weng, L., Jung, X., Murakami, J. L., Hu, X., McDonald, T., Lin, A., Kumar, A. R., DiGiusto, D. L., Stein, A. S., Pullarkat, V. A., Hui, S. K., Carlesso, N., Kuo, Y. H, Bhati, R., Marcucci, G., Chen, C. C. (https://doi.org/10.1038/leu.2017.259>
65. 2017) A co-inhibitory alliance in myeloid leukemia: TIM-3/galectin-9 complex as a new target for checkpoint blockade therapy. EBioMedicine 23, 6-7.
< , M. A., Esendagli, G. (https://doi.org/10.1016/j.ebiom.2017.08.002>
66. 2001) The effects of extracellular pH on immune function. J. Leukoc. Biol. 69, 522-530.
< , A. (https://doi.org/10.1189/jlb.69.4.522>
67. 1984) Evidence for a 15;17 translocation in every patient with acute promyelocytic leukemia. Am. J. Med. 76, 827-841.
< , R. A., Kondo, K., Vardiman, J. W., Butler, A. E., Golomb, H. M., Rowley, J. D. (https://doi.org/10.1016/0002-9343(84)90994-X>
68. 1983) Association of an inversion of chromosome 16 with abnormal marrow eosinophils in acute myelomonocytic leukemia. A unique cytogenetic-clinicopathological association. N. Engl. J. Med. 309, 630-636.
< , M. M., Larson, R. A., Bitter, M. A., Vardiman, J. W., Golomb, H. M., Rowley, J. D. (https://doi.org/10.1056/NEJM198309153091103>
69. 2002) Cytosolic NADP+-dependent isocitrate dehydrogenase status modulates oxidative damage to cells. Free Radic. Biol. Med. 32, 1185-1196.
< , S. M., Koh, H. J., Park, D. C., Song, B. J., Huh, T. L., Park, J. W. (https://doi.org/10.1016/S0891-5849(02)00815-8>
70. 2013) MHC class I antigen processing and presenting machinery: organization, function, and defects in tumor cells. J. Natl. Cancer Inst. 105, 1172-1187.
< , P., Shin, E. C., Perosa, F., Vacca, A., Dammacco, F., Racanelli, V. (https://doi.org/10.1093/jnci/djt184>
71. 2010) DNMT3A mutations in acute myeloid leukemia. N. Engl. J. Med. 363, 2424-2433.
< , T. J., Ding, L., Walter, M. J., McLellan, M. D., Lamprecht, T., Larson, D. E., Kandoth, C., Payton, J. E., Baty, J., Welch, J., Harris, C. C., Lichti, C. F., Townsend, R. R., Fulton, R. S., Dooling, D. J., Koboldt, D. C., Schmidt, H., Zhang, Q., Osborne, J. R., Lin, L., O’Laughlin, M., McMichael, J. F., Delehaunt,y K. D., McGrath, S. D., Fulton, L. A., Magrini, V. J., Vickery, T. L., Hundal, J., Cook, L.. L, Conyers, J. J., Swift, G. W., Reed, J. P., Alldredge, P. A., Wylie, T., Walker, J., Kalicki, J., Watson, M. A., Heath, S., Shannon, W. D., Varghese, N., Nagarajan, R., Westervelt, P., Tomasson, M. H., Link, D. C., Graubert, T. A., DiPersio, J. F., Mardis. E. R., Wilson, R. K. (https://doi.org/10.1056/NEJMoa1005143>
72. 2011) Deletion of Tet2 in mice leads to dysregulated hematopoietic stem cells and subsequent development of myeloid malignancies. Blood 118, 4509-4518.
< , Z., Cai, X., Cai, C. L., Wang, J., Zhang, W., Petersen, B. E., Yang, F. C., Xu, M. (https://doi.org/10.1182/blood-2010-12-325241>
73. 2017) Biologico- clinical significance of DNMT3A variants expression in acute myeloid leukemia. Biochem. Biophys. Res. Commun. 494, 270-277.
< , N., Fu, W., Zhao, C., Li, B., Yan, X., Li, Y. (https://doi.org/10.1016/j.bbrc.2017.10.041>
74. 2012) Natural killer cell immune escape in acute myeloid leukemia. Leukemia 26, 2019-2026.
< , E., Willemen, Y., Berneman, Z. N., Van Tendeloo, V. F., Smits, E. L. (https://doi.org/10.1038/leu.2012.87>
75. 1993) Fusion between transcription factor CBF β/PEBP2 β and a myosin heavy chain in acute myeloid leukemia. Science 261, 1041-1044.
< , P., Tarle, S. A., Hajra, A., Claxton, D. F., Marlton, P., Freedman, M., Siciliano, M. J., Collins, F. S. (https://doi.org/10.1126/science.8351518>
76. 2017) Distinct signaling events promote resistance to mitoxantrone and etoposide in pediatric AML: a Children’s Oncology Group report. Oncotarget 8, 90037-90049.
< , X., Gerbing, R. B., Alonzo, T. A., Redell, M. S. (https://doi.org/10.18632/oncotarget.21363>
77. 2017) A tumor suppressor role for C/EBPα in solid tumors: more than fat and blood. Oncogene 36, 5221-5230.
< , A. R., Coffer, P. J. (https://doi.org/10.1038/onc.2017.151>
78. 2005) MicroRNA expression profiles classify human cancers. Nature 435, 834-838.
< , J., Getz, G., Miska, E. A., Alvarez-Saavedra, E., Lamb, J., Peck, D., Sweet-Cordero, A., Ebert, B. L., Mak, R. H., Ferrando, A. A., Downing, J. R., Jacks, T., Horvitz, H. R., Golub, T. R. (https://doi.org/10.1038/nature03702>
79. 2008) High EVI1 levels predict adverse outcome in acute myeloid leukemia: prevalence of EVI1 overexpression and chromosome 3q26 abnormalities underestimated. Blood 111, 4329-4337.
< , S., van Drunen, E., van Norden, Y., van Hoven, A., Erpelinck, C. A., Valk, P. J., Beverloo, H. B., Lowenberg, B., Delwel, R. (https://doi.org/10.1182/blood-2007-10-119230>
80. 2012) The super elongation complex (SEC) family in transcriptional control. Nat. Rev. Mol. Cell Biol. 13, 543.
< , Z., Lin, C., Shilatifard, A. (https://doi.org/10.1038/nrm3417>
81. 2006) SALL4, a novel oncogene, is constitutively expressed in human acute myeloid leukemia (AML) and induces AML in transgenic mice. Blood 108, 2726-2735.
< , Y., Cui, W., Yang, J., Qu, J., Di, C., Amin, H. M., Lai, R., Ritz, J., Krause, D. S., Chai, L. (https://doi.org/10.1182/blood-2006-02-001594>
82. 2014) CBFB-MYH11/RUNX1 together with a compendium of hematopoietic regulators, chromatin modifiers and basal transcription factors occupies self-renewal genes in inv(16) acute myeloid leukemia. Leukemia 28, 770-778.
< , A., Singh, A. A., Jansen, P. W., Wierenga, A. T., Riahi, H., Franci, G., Prange, K., Saeed, S., Vellenga, E., Vermeulen, M., Stunnenberg, H. G., Martens, J. H. (https://doi.org/10.1038/leu.2013.257>
83. 2018) Internal tandem duplication mutations in the tyrosine kinase domain of FLT3 display a higher oncogenic potential than the activation loop D835Y mutation. Ann. Hematol. 97, 773-780.
< , A., Heidel, F., Fischer, T., Ronnstrand, L. (https://doi.org/10.1007/s00277-018-3245-5>
84. 2017) Harnessing the immune system against leukemia: monoclonal antibodies and checkpoint strategies for AML. Adv. Exp. Med. Biol. 995, 73-95.
< , L., Kantarjian, H., Garcia-Mannero, G., Ravandi, F., Sharma, P., Daver, N. (https://doi.org/10.1007/978-3-319-53156-4_4>
85. 2017) Isocitrate dehydrogenase mutations in myeloid malignancies. Leukemia 31, 272-281.
< , B. C., Fathi, A. T., DiNardo, C. D., Pollyea, D. A., Chan, S. M., Swords, R. (https://doi.org/10.1038/leu.2016.275>
86. 2016) Spectrum and prognostic relevance of driver gene mutations in acute myeloid leukemia. Blood 128, 686-698.
< , K. H., Herold, T., Rothenberg-Thurley, M., Amler, S., Sauerland, M. C., Gorlich, D., Schneider, S., Konstandin, N. P., Dufour, A., Braundl, K., Ksienzyk, B., Zellmeier, E., Hartmann, L., Greif, P. A., Fiegl, M., Subklewe, M., Bohlander S. K., Krug, U., Faldum, A., Berdel, W. E., Wörmann, B., Büchner, T., Hiddemann, W., Braess, J., Spiekermann, K.; AMLCG Study Group. (https://doi.org/10.1182/blood-2016-01-693879>
87. 2009) New insights to the MLL recombinome of acute leukemias. Leukemia 23, 1490-1499.
< , C., Kowarz, E., Hofmann, J., Renneville, A., Zuna, J., Trka, J., Ben Abdelali, R., Macintyre, E., De Braekeleer, E., De Braekeleer, M., et al. (https://doi.org/10.1038/leu.2009.33>
88. 2013) Hypoxia-inducing factors as master regulators of stemness properties and altered metabolism of cancer- and metastasis-initiating cells. J. Cell. Mol. Med. 17, 30-54.
< , M., Batra, S. K. (https://doi.org/10.1111/jcmm.12004>
89. 2011) Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell 20, 11-24.
< , K., Reavie, L., Shih, A., Abdel-Wahab, O., Ndiaye-Lobry, D., Lobry, C., Figueroa, M. E., Vasanthakumar, A., Patel, J., Zhao, X., Perna, F., Pandey, S., Madzo, J., Son, C., Dai, Q., He, C., Ibrahim, S., Beran, M., Zavadil, J., Nimer, S. D., Melnick, A., Godley, L. A., Aifantis, I., Levine, R. L. (https://doi.org/10.1016/j.ccr.2011.06.001>
90. 1992) Activation of EVI1 gene expression in human acute myelogenous leukemias by translocations spanning 300-400 kilobases on chromosome band 3q26. Proc. Natl. Acad. Sci. USA 89, 3937-3941.
< , K., Parganas, E., William, C. L., Whittaker, M. H., Drabkin, H., Oval, J., Taetle, R., Valentine, M. B., Ihle, J. N. (https://doi.org/10.1073/pnas.89.9.3937>
91. 1996) Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia 10, 1911-1918.
, M., Yokota, S., Iwai, T., Kaneko, H., Horiike, S., Kashima, K., Sonoda, Y., Fujimoto, T., Misawa, S. (
92. 2001) Spatial localization of transplanted hemopoietic stem cells: inferences for the localization of stem cell niches. Blood 97, 2293-2299.
< , S. K., Johnston, H. M., Coverdale, J. A. (https://doi.org/10.1182/blood.V97.8.2293>
93. 2004) Effects of the leukemiaassociated AML1-ETO protein on hematopoietic stem and progenitor cells. Oncogene 23, 4249-4254.
< , S. D., Moore, M. A. (https://doi.org/10.1038/sj.onc.1207673>
94. 2015) Next-generation sequencing of acute myeloid leukemia identifies the significance of TP53, U2AF1, ASXL1, and TET2 mutations. Mod. Pathol. 28, 706-714.
< , R. S., Ma, L., Merker, J. D., Gotlib, J. R., Schrijver, I., Zehnder, J. L., Arber, D. A. (https://doi.org/10.1038/modpathol.2014.160>
95. 1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247-257.
< , M., Bell, D. W., Haber, D. A., Li, E. (https://doi.org/10.1016/S0092-8674(00)81656-6>
96. 2017) Tet2 loss leads to hypermutagenicity in haematopoietic stem/progenitor cells. Nat. Commun. 8, 15102.
< , F., Wingo, T. S., Zhao, Z., Gao, R., Makishima, H., Qu, G., Lin, L., Yu, M., Ortega, J. R., Wang, J., Nazha, A., Chen, L., Yao, B., Liu, C., Chen, S., Weeks, O., Ni, H., Phillips, B. L., Huang, S., Wang, J., He, C., Li, G. M., Radivoyevitch, T., Aifantis, I., Maciejewski, J. P., Yang, F. C., Jin, P., Xu, M. (https://doi.org/10.1038/ncomms15102>
97. 2016) Genomic classification and prognosis in acute myeloid leukemia. N. Engl. J. Med. 374, 2209-2221.
< , E., Gerstung, M., Bullinger, L., Gaidzik, V. I., Paschka, P., Roberts, N. D., Potter, N. E., Heuser, M., Thol, F., Bolli, N., Gundem, G., Van Loo, P., Martincorena, I., Ganly, P., Mudie, L., McLaren, S., O’Meara, S., Raine, K., Jones, D. R., Teague, J. W., Butler, A. P., Greaves, M. F., Ganser, A., Döhner, K., Schlenk, R. F., Döhner, H., Campbell, P. J. (https://doi.org/10.1056/NEJMoa1516192>
98. 2017) Increased vascular permeability in the bone marrow microenvironment contributes to disease progression and drug response in acute myeloid leukemia. Cancer Cell 32, 324.e326-341.e326.
< , D., Di Tullio, A., Abarrategi, A., Rouault-Pierre, K., Foster, K., Ariza-McNaughton, L., Montaner, B., Chakravarty, P., Bhaw, L., Diana, G., Lassailly, F., Gribben, J., Bonnet, D. (https://doi.org/10.1016/j.ccell.2017.08.001>
99. 2013) TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat. Rev. Mol. Cell Biol. 14, 341-356.
< , W. A., Aravind, L., Rao, A. (https://doi.org/10.1038/nrm3589>
100. 2009) Multiclass cancer classification through gene expression profiles: microRNA versus mRNA. J. Genet. Genomics 36, 409-416.
< , S., Zeng, X., Li, X., Peng, X., Chen, L. (https://doi.org/10.1016/S1673-8527(08)60130-7>
101. 2016) Mesenchymal stem and progenitor cells in normal and dysplastic hematopoiesis - masters of survival and clonality? Int. J. Mol. Sci. 17, pii: E1009
< , L., Valent, P., Greil, R. (https://doi.org/10.3390/ijms17071009>
102. 2017) Therapeutic targeting of acute myeloid leukemia stem cells. Blood 129, 1627-1635.
< , D. A., Jordan, C. T. (https://doi.org/10.1182/blood-2016-10-696039>
103. 2017) MLL-AF9 and MLL-AF4 oncofusion proteins bind a distinct enhancer repertoire and target the RUNX1 program in 11q23 acute myeloid leukemia. Oncogene 36, 3346-3356.
< , K. H. M., Mandoli, A., Kuznetsova, T., Wang, S. Y., Sotoca, A. M., Marneth, A. E., van der Reijden, B. A., Stunnenberg, H. G., Martens, J. H. A. (https://doi.org/10.1038/onc.2016.488>
104. 2014) Prevalence and prognostic significance of c-KIT mutations in core binding factor acute myeloid leukemia: a comprehensive large-scale study from a single Chinese center. Leuk. Res. 38, 1435-1440.
< , Y. Z., Zhu, H. H., Jiang, Q., Jiang, H., Zhang, L. P., Xu, L. P., Wang, Y., Liu, Y. R., Lai, Y. Y., Shi, H. X., Jiang, B., Huang, X. J. (https://doi.org/10.1016/j.leukres.2014.09.017>
105. 2012) IDH mutations in acute myeloid leukemia. Hum. Pathol. 43, 1541-1551.
< , D., Konoplev, S., Medeiros, L. J., Chen, W. (https://doi.org/10.1016/j.humpath.2012.05.003>
106. 2018) Altered cancer metabolism in mechanisms of immunotherapy resistance. Pharmacol Ther. 195, 162-171.
< , R., Caetano, M. S., Barsoumian, H. B., Mafra, A. C. P., Zambalde, E. P., Menon, H., Tsouko, E., Welsh, J. W., Cortez, M. A. (https://doi.org/10.1016/j.pharmthera.2018.11.004>
107. 2014) DNA hydroxymethylation profiling reveals that WT1 mutations result in loss of TET2 function in acute myeloid leukemia. Cell Rep. 9, 1841-1855.
< , R., Alkalin, A., Madzo, J., Vasanthakumar, A., Pronier, E., Patel, J., Li, Y., Ahn, J., Abdel-Wahab, O., Shih, A., Lu, C., Ward, P. S., Tsai, J. J., Hricik, T., Tosello, V., Tallman, J. E., Zhao, X., Daniels, D., Dai, Q., Ciminio, L., Aifantis, I., He, C., Fuks, F., Tallman, M. S., Ferrando, A., Nimer, S., Paietta, E., Thompson, C. B., Licht, J. D., Mason, C. E., Godley, L. A., Melnick, A., Figueroa, M. E., Levine, R. L. (https://doi.org/10.1016/j.celrep.2014.11.004>
108. 2015) Biology and clinical relevance of acute myeloid leukemia stem cells. Semin. Hematol. 52, 150-164.
< , A., Chan, S. M., Thomas, D., Majeti, R. (https://doi.org/10.1053/j.seminhematol.2015.03.008>
109. 2016) Microenvironmental oxygen partial pressure in acute myeloid leukemia: is there really a role for hypoxia? Exp. Hematol. 44, 578-582.
< , C. T., Fiegl, M. (https://doi.org/10.1016/j.exphem.2016.04.008>
110. 2015) Regulation of hematopoietic and leukemic stem cells by the immune system. Cell Death Differ. 22, 187-198.
< , C., Schurch, C. M., Ochsenbein, A. F. (https://doi.org/10.1038/cdd.2014.89>
111. 2016) Subtype-specific patterns of molecular mutations in acute myeloid leukemia. Leukemia 31, 11.
< , D., Haferlach, T., Schnittger, S., Perglerová, K., Kern, W., Haferlach, C. (https://doi.org/10.1038/leu.2016.163>
112. 1973) Identificaton of a translocation with quinacrine fluorescence in a patient with acute leukemia. Ann. Genet. 16, 109-112.
, J. D. (
113. 1996) 11q23 rearrangements in acute leukemia. Leukemia 10, 74-82.
, J. E., Behm, F. G., Downing, J. R. (
114. 2012) TP53 alterations in acute myeloid leukemia with complex karyotype correlate with specific copy number alterations, monosomal karyotype, and dismal outcome. Blood 119, 2114-2121.
< , F. G., Schlenk, R. F., Bullinger, L., Kayser, S., Teleanu, V., Kett, H., Habdank, M., Kugler, C. M., Holzmann, K., Gaidzik, V. I., Paschka, P., Held., G, von Lilienfeld- Toal, M., Lübbert, M., Fröhling, S., Zenz, T., Krauter, J., Schlegelberger, B., Ganser, A., Lichter, P., Döhner, K., Döhner, H. (https://doi.org/10.1182/blood-2011-08-375758>
115. 2015) A new path to leukemia with WIT. Mol. Cell 57, 573-574.
< , J. L., Graf, T. (https://doi.org/10.1016/j.molcel.2015.02.005>
116. 2015) Vascular cell adhesion molecule-1 (VCAM-1) - an increasing insight into its role in tumorigenicity and metastasis. Int. J. Cancer 136, 2504-2514.
< , M., Bendas, G. (https://doi.org/10.1002/ijc.28927>
117. 1978) The relationship between the spleen colony- forming cell and the haemopoietic stem cell. Blood Cells 4, 7-25.
, R. (
118. 2018) Stem cell niche-specific Ebf3 maintains the bone marrow cavity. Genes Dev. 32, 359-372.
< , M., Omatsu, Y., Watanabe, H., Kondoh, G., Nagasawa, T. (https://doi.org/10.1101/gad.311068.117>
119. 2017) Numerous niches for hematopoietic stem cells remain empty during homeostasis. Blood 129, 2124-2131.
< , M., Sugiyama, T., Nagasawa, T. (https://doi.org/10.1182/blood-2016-09-740563>
120. 2017) Tracing the origins of relapse in acute myeloid leukaemia to stem cells. Nature 547, 104-108.
< , L. I., Mitchell, A., Heisler, L., Abelson, S., Ng, S. W. K., Trotman-Grant, A., Medeiros, J. J. F., Rao-Bhatia, A., Jaciw-Zurakowsky, I., Marke, R., McLeod, J. L., Doedens, M., Bader, G., Voisin, V., Xu, C., McPherson, J. D., Hudson, T. J., Wang, J. C. Y., Minden, M. D., Dick, J. E. (https://doi.org/10.1038/nature22993>
121. 2001) Lactic acidosis: a metabolic complication of hematologic malignancies: case report and review of the literature. Cancer 92, 2237-2246.
< , E. M., Shenep, J. L., Burghen, G. A., Pui, C. H., Behm, F. G., Sandlund, J. T. (https://doi.org/10.1002/1097-0142(20011101)92:9<2237::AID-CNCR1569>3.0.CO;2-9>
122. 2017) Role of RUNX1 in hematological malignancies. Blood 129, 2070-2082.
< , R., Kamikubo, Y., Liu, P. (https://doi.org/10.1182/blood-2016-10-687830>
123. 2002) Core-binding factors in haematopoiesis and leukaemia. Nat. Rev. Cancer 2, 502-513.
< , N. A., Gilliland, D. G. (https://doi.org/10.1038/nrc840>
124. 1994) Identification of a breakpoint cluster region 3’ of the ribophorin I gene at 3q21 associated with the transcriptional activation of the EVI1 gene in acute myelogenous leukemias with inv(3)(q21q26). Blood 84, 2681-2688.
< , K., Parganas, E., Gajjar, A., Abe, T., Takahashi, S., Tani, K., Asano, S., Asou, H., Kamada, N., Yokota, J. (https://doi.org/10.1182/blood.V84.8.2681.2681>
125. 1999) Nucleolar protein B23 has molecular chaperone activities. Protein Sci. 8, 905-912.
< , A., Olson, M. O. (https://doi.org/10.1110/ps.8.4.905>
126. 2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930-935.
< , M., Koh, K. P., Shen, Y., Pastor, W. A., Bandukwala, H., Brudno, Y., Agarwal, S., Iyer, L. M., Liu, D. R., Aravind, L., Rao, A. (https://doi.org/10.1126/science.1170116>
127. 2012) Tet family proteins and 5-hydroxymethylcytosine in development and disease. Development 139, 1895-1902.
< , L., Shi, Y. G. (https://doi.org/10.1242/dev.070771>
128. 2014) Mutations in the cohesin complex in acute myeloid leukemia: clinical and prognostic implications. Blood 123, 914-920.
< , F., Bollin, R., Gehlhaar, M., Walter, C., Dugas, M., Suchanek, K. J., Kirchner, A., Huang, L., Chaturvedi, A., Wichmann, M., Wiehlmann, L., Shahswar, R., Damm, F., Göhring, G., Schlegelberger, B., Schlenk, R., Döhner, K., Döhner, H., Krauter, J., Ganser, A., Heuser, M. (https://doi.org/10.1182/blood-2013-07-518746>
129. 2014) Genetic alterations of the cohesin complex genes in myeloid malignancies. Blood 124, 1790-1798.
< , S., Viny, A. D., Makishima, H., Spitzer, B., Radivoyevitch, T., Przychodzen, B., Sekeres, M. A., Levine, R. L., Maciejewski, J. P. (https://doi.org/10.1182/blood-2014-04-567057>
130. 2018) Cancer stem cells and hypoxia-inducible factors (Review). Int. J. Oncol. 53, 469-476.
, W. W., Tong, G. H., Liu, Y. (
131. 2012) The role of the GATA2 transcription factor in normal and malignant hematopoiesis. Crit. Rev. Oncol. Hematol. 82, 1-17.
< , C., Conchillo, A., Garcia-Sanchez, M. A., Odero, M. D. (https://doi.org/10.1016/j.critrevonc.2011.04.007>
132. 2018) Cohesin dynamic association to chromatin and interfacing with replication forks in genome integrity maintenance. Curr. Genet. 64, 1005-1013.
< , S., Bermejo, R. (https://doi.org/10.1007/s00294-018-0824-x>
133. Vosberg, S., Hartmann, L., Metzeler, K. H., Konstandin, N. P., Schneider, S., Varadharajan, A., Hauser, A., Krebs, S., Blum, H., Bohlander, S. K., Hiddemann, W., Tischer, J., Spiekermann, K., Greif, P. A. (2018) Relapse of acute myeloid leukemia after allogeneic stem cell transplantation is associated with gain of WT1 alterations and high mutation load. Haematologica.
<https://doi.org/10.3324/haematol.2018.193102>
134. 2018) Immune dysregulation in myelodysplastic syndrome: Clinical features, pathogenesis and therapeutic strategies. Crit. Rev. Oncol. Hematol. 122, 123-132.
< , C., Yang, Y., Gao, S., Chen, J., Yu, J., Zhang, H., Li, M., Zhan, X., Li, W. (https://doi.org/10.1016/j.critrevonc.2017.12.013>
135. 1995) Impaired energy homeostasis in C/EBP α knockout mice. Science 269, 1108-1112.
< , N. D., Finegold, M. J., Bradley, A., Ou, C. N., Abdelsayed, S. V., Wilde, M. D., Taylor, L. R., Wilson, D. R., Darlington, G. J. (https://doi.org/10.1126/science.7652557>
136. 2003) TRAIL and apoptosis induction by TNF-family death receptors. Oncogene 22, 8628-8633.
< , S., El-Deiry, W. S. (https://doi.org/10.1038/sj.onc.1207232>
137. 2015) WT1 recruits TET2 to regulate its target gene expression and suppress leukemia cell proliferation. Mol. Cell 57, 662-673.
< , Y., Xiao, M., Chen, X., Chen, L., Xu, Y., Lv, L., Wang, P., Yang, H., Ma, S., Lin, H., Jiao, B., Ren, R., Ye, D., Guan, K. L., Xiong, Y. (https://doi.org/10.1016/j.molcel.2014.12.023>
138. 1956) On the origin of cancer cells. Science 123, 309-314.
< , O. (https://doi.org/10.1126/science.123.3191.309>
139. 2008) Stromal-mediated protection of tyrosine kinase inhibitor-treated BCR-ABL-expressing leukemia cells. Mol. Cancer Ther. 7, 1121-1129.
< , E., Wright, R. D., McMillin, D. W., Mitsiades, C., Ray, A., Barrett, R., Adamia, S., Stone, R., Galinsky, I., Kung, A. L., Griffin, J. D. (https://doi.org/10.1158/1535-7163.MCT-07-2331>
140. 2013) RUNX1 is a key target in t(4;11) leukemias that contributes to gene activation through an AF4-MLL complex interaction. Cell Rep. 3, 116-127.
< , A. C., Ballabio, E., Geng, H., North, P., Tapia, M., Kerry, J., Biswas, D., Roeder, R. G., Allis, C. D., Melnick, A., de Bruijn, M. F., Milne, T. A. (https://doi.org/10.1016/j.celrep.2012.12.016>
141. 2012) Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nature 487, 505-509.
< , T. R., Fridlyand, J., Yan, Y., Penuel, E., Burton, L., Chan, E., Peng, J., Lin, E., Wang, Y., Sosman, J., Ribas, A., Li, J., Moffat, J., Sutherlin, D. P., Koeppen, H., Merchant, M., Neve, R., Settleman, J. (https://doi.org/10.1038/nature11249>
142. 2018) Downregulation of miR135a predicts poor prognosis in acute myeloid leukemia and regulates leukemia progression via modulating HOXA10 expression. Mol. Med. Rep. 18, 1134-1140.
, H., Wen, Q. (
143. 2014) A remote GATA2 hematopoietic enhancer drives leukemogenesis in inv(3) (q21;q26) by activating EVI1 expression. Cancer Cell 25, 415-427.
< , H., Suzuki, M., Otsuki, A., Shimizu, R., Bresnick, E. H., Engel, J. D., Yamamoto, M. (https://doi.org/10.1016/j.ccr.2014.02.008>
144. 2018) Gain of function of ASXL1 truncating protein in the pathogenesis of myeloid malignancies. Blood 131, 328-341.
< , H., Kurtenbach, S., Guo, Y., Lohse, I., Durante, M. A., Li, J., Li, Z., Al-Ali, H., Li, L., Chen, Z., Field, M. G., Zhang, P., Chen, S., Yamamoto, S., Li, Z., Zhou, Y., Nimer, S. D., Harbour, J. W., Wahlestedt, C., Xu, M., Yang, F. C. (https://doi.org/10.1182/blood-2017-06-789669>
145. 2014) Bone marrow stromamediated resistance to FLT3 inhibitors in FLT3-ITD AML is mediated by persistent activation of extracellular regulated kinase. Br. J. Haematol. 164, 61-72.
< , X., Sexauer, A., Levis, M. (https://doi.org/10.1111/bjh.12599>
146. 2013) Adaptive resistance: a tumor strategy to evade immune attack. Eur. J. Immunol. 43, 576-579.
< , S., Chen, L. (https://doi.org/10.1002/eji.201243275>
147. 2006) The stem cell niches in bone. J. Clin. Invest. 116, 1195-1201.
< , T., Li, L. (https://doi.org/10.1172/JCI28568>
148. 1987) Identification and characterization of a hexameric form of nucleolar phosphoprotein B23. Biochim. Biophys. Acta 925, 74-82.
< , B. Y., Chan, P. K. (https://doi.org/10.1016/0304-4165(87)90149-8>
149. 1997) Absence of granulocyte colony-stimulating factor signaling and neutrophil development in CCAAT enhancer binding protein α-deficient mice. Proc. Natl. Acad. Sci. USA 94, 569-574.
< , D. E., Zhang, P., Wang, N. D., Hetherington, C. J., Darlington, G. J., Tenen, D. G. (https://doi.org/10.1073/pnas.94.2.569>
150. 2004) Enhancement of hematopoietic stem cell repopulating capacity and self-renewal in the absence of the transcription factor C/EBP α. Immunity 21, 853-863.
< , P., Iwasaki-Arai, J., Iwasaki, H., Fenyus, M. L., Dayaram, T., Owens, B. M., Shigematsu, H., Levantini, E., Huettner, C. S., Lekstrom-Himes, J. A., Akashi, K., Tenen, D. G.(https://doi.org/10.1016/j.immuni.2004.11.006>
151. Zhu, J., Petit, P. F., Van den Eynde, B. J. (2018) Apoptosis of tumor-infiltrating T lymphocytes: a new immune checkpoint mechanism. Cancer Immunol. Immunother.
<https://doi.org/10.1007/s00262-018-2269-y>
152. 2005) Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat. Rev. Cancer 5, 263-274.
< , W. (https://doi.org/10.1038/nrc1586>