Fol. Biol. 2019, 65, 53-63

https://doi.org/10.14712/fb2019065020053

Immune Cells and Immunosenescence

J. Bischof1, F. Gärtner1, K. Zeiser1, R. Kunz1, C. Schreiner1, E. Hoffer1, T. Burster2, U. Knippschild1, Michał Zimecki3

1Department of General Visceral Surgery, Surgery Center, Ulm University Medical Center, Ulm, Germany
2Department of Biology, School of Science and Technology, Nazarbayev University, Astana, Kazakhstan Republic
3Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland

Received October 2018
Accepted December 2018

References

1. Adibzadeh, M., Pohla, H., Rehbein, A., Pawelec, G. (1995) Long-term culture of monoclonal human T lymphocytes: models for immunosenescence? Mech. Ageing Dev. 83, 171-183. <https://doi.org/10.1016/0047-6374(95)01625-A>
2. Agrawal, A., Agrawal, S., Cao, J. N., Su, H., Osann, K., Gupta, S. (2007a) Altered innate immune functioning of dendritic cells in elderly humans: a role of phosphoinositide 3-kinase-signaling pathway. J. Immunol. 178, 6912-6922. <https://doi.org/10.4049/jimmunol.178.11.6912>
3. Agrawal, A., Agrawal, S., Gupta, S. (2007b) Dendritic cells in human aging. Exp. Gerontol. 42, 421-426. <https://doi.org/10.1016/j.exger.2006.11.007>
4. Allman, D., Miller, J. P. (2005) B cell development and receptor diversity during aging. Curr. Opin. Immunol. 17, 463-467. <https://doi.org/10.1016/j.coi.2005.07.002>
5. Aydar, Y., Balogh, P., Tew, J. G., Szakal, A. K. (2002) Agerelated depression of FDC accessory functions and CD21 ligand-mediated repair of co-stimulation. Eur. J. Immunol. 32, 2817-2826. <https://doi.org/10.1002/1521-4141(2002010)32:10<2817::AID-IMMU2817>3.0.CO;2-Z>
6. Balato, A., Unutmaz, D., Gaspari, A. A. (2009) Natural killer T cells: an unconventional T cell subset with diverse effector and regulatory functions. J. Invest. Dermatol. 129, 1628-1642. <https://doi.org/10.1038/jid.2009.30>
7. Baldridge, C. W., Gerard, R. W. (1932) The extra respiration of phagocytosis. Am. J. Physiol. – Legacy Content 103, 235-236. <https://doi.org/10.1152/ajplegacy.1932.103.1.235>
8. Banchereau, J., Steinman, R. M. (1998) Dendritic cells and the control of immunity. Nature 392, 245-252. <https://doi.org/10.1038/32588>
9. Barna, J. B., Kew, R. R. (1995) Inhibition of neutrophil chemotaxis by protease inhibitors. Differential effect of inhibitors of serine and thiol proteases. Inflammation 19, 561-574. <https://doi.org/10.1007/BF01539136>
10. Biasi, D., Carletto, A., Dell’Agnola, C., Caramaschi, P., Montesanti, F., Zavateri, G., Zeminian, S., Bellavite, P., Bambara, L. M. (1996) Neutrophil migration, oxidative metabolism, and adhesion in elderly and young subjects. Inflammation 20, 673-681. <https://doi.org/10.1007/BF01488803>
11. Born, J., Uthgenannt, D., Dodt, C., Nünninghoff, D., Ringvolt, E., Wagner, T., Fehm, H.-L. (1995) Cytokine production and lymphocyte subpopulations in aged humans. An assessment during nocturnal sleep. Mech. Ageing Dev. 84, 113-126. <https://doi.org/10.1016/0047-6374(95)01638-4>
12. Burton, G. W., Traber, M. G. (1990) Vitamin E: antioxidant activity, biokinetics, and bioavailability. Annu. Rev. Nutr. 10, 357-382. <https://doi.org/10.1146/annurev.nu.10.070190.002041>
13. Butcher, S. K., Chahal, H., Nayak, L., Sinclair, A., Henriquez, N. V., Sapey, E., O’Mahony, D., Lord, J. M. (2001) Senescence in innate immune responses: reduced neutrophil phagocytic capacity and CD16 expression in elderly humans. J. Leukoc. Biol. 70, 881-886. <https://doi.org/10.1189/jlb.70.6.881>
14. Cancro, M. P., Hao, Y., Scholz, J. L., Riley, R. L., Frasca, D., Dunn-Walters, D. K., Blomberg, B. B. (2009) B cells and aging: molecules and mechanisms. Trends Immunol. 30, 313-318. <https://doi.org/10.1016/j.it.2009.04.005>
15. Cepeda, S., Cantu, C., Orozco, S., Xiao, Y., Brown, Z., Semwal, M. K., Venables, T., Anderson, M. S., Griffith, A. V. (2018) Age-associated decline in thymic B cell expression of Aire and Aire-dependent self-antigens. Cell Rep. 22, 1276-1287. <https://doi.org/10.1016/j.celrep.2018.01.015>
16. Chatta, G. S., Andrews, R. G., Rodger, E., Schrag, M., Hammond, W. P., Dale, D. C. (1993) Hematopoietic progenitors and aging: alterations in granulocytic precursors and responsiveness to recombinant human G-CSF, GM-CSF, and IL-3. J. Gerontol. 48, M207-212. <https://doi.org/10.1093/geronj/48.5.M207>
17. Cheung, A. S., Zajac, J. D., Grossmann, M. (2014) Muscle and bone effects of androgen deprivation therapy: current and emerging therapies. Endocr. Relat. Cancer 21, R371-394. <https://doi.org/10.1530/ERC-14-0172>
18. Chung, B. K., Priatel, J. J., Tan, R. S. (2015) CD1d expression and invariant NKT cell responses in herpesvirus infections. Front. Immunol. 6, 312. <https://doi.org/10.3389/fimmu.2015.00312>
19. Cicchetti, G., Allen, P. G., Glogauer, M. (2002) Chemotactic signaling pathways in neutrophils: from receptor to actin assembly. Crit. Rev. Oral Biol. Med. 13, 220-228. <https://doi.org/10.1177/154411130201300302>
20. Cicin-Sain, L., Smyk-Pearson, S., Currier, N., Byrd, L., Koudelka, C., Robinson, T., Swarbrick, G., Tackitt, S., Legasse, A., Fischer, M., Nikolich-Zugich, D., Park, B., Hobbs, T., Doane, C. J., Mori, M., Axthelm, M. K., Lewinsohn, D. A., Nikolich-Zugich, J. (2010) Loss of naive T cells and repertoire constriction predict poor response to vaccination in old primates. J. Immunol. 184, 6739-6745. <https://doi.org/10.4049/jimmunol.0904193>
21. Clague, M. J., Thorpe, C., Jones, A. T. (1995) Phosphatidylinositol 3-kinase regulation of fluid phase endocytosis. FEBS Lett. 367, 272-274. <https://doi.org/10.1016/0014-5793(95)00576-U>
22. Colonna-Romano, G., Bulati, M., Aquino, A., Scialabba, G., Candore, G., Lio, D., Motta, M., Malaguarnera, M., Caruso, C. (2003) B cells in the aged: CD27, CD5, and CD40 expression. Mech. Ageing Dev. 124, 389-393. <https://doi.org/10.1016/S0047-6374(03)00013-7>
23. Dailey, R. W., Eun, S. Y., Russell, C. E., Vogel, L. A. (2001) B cells of aged mice show decreased expansion in response to antigen, but are normal in effector function. Cell Immunol. 214, 99-109. <https://doi.org/10.1006/cimm.2001.1894>
24. Dalli, J., Serhan, C. N. (2017) Pro-resolving mediators in regulating and conferring macrophage function. Front. Immunol. 8, 1400. <https://doi.org/10.3389/fimmu.2017.01400>
25. De Martinis, M., Modesti, M., Ginaldi, L. (2004) Phenotypic and functional changes of circulating monocytes and polymorphonuclear leucocytes from elderly persons. Immunol. Cell Biol. 82, 415-420. <https://doi.org/10.1111/j.0818-9641.2004.01242.x>
26. Dejaco, C., Duftner, C., Grubeck-Loebenstein, B., Schirmer, M. (2006) Imbalance of regulatory T cells in human autoimmune diseases. Immunology 117, 289-300. <https://doi.org/10.1111/j.1365-2567.2005.02317.x>
27. Domingues-Faria, C., Vasson, M. P., Goncalves-Mendes, N., Boirie, Y., Walrand, S. (2016) Skeletal muscle regeneration and impact of aging and nutrition. Ageing Res. Rev. 26, 22-36. <https://doi.org/10.1016/j.arr.2015.12.004>
28. Esparza, B., Sanchez, H., Ruiz, M., Barranquero, M., Sabino, E., Merino, F. (1996) Neutrophil function in elderly persons assessed by flow cytometry. Immunol. Invest. 25, 185-190. <https://doi.org/10.3109/08820139609059301>
29. Fann, M., Chiu, W. K., Wood, W. H., 3rd, Levine, B. L., Becker, K. G., Weng, N. P. (2005) Gene expression characteristics of CD28null memory phenotype CD8+ T cells and its implication in T cell aging. Immunol. Rev. 205, 190-206. <https://doi.org/10.1111/j.0105-2896.2005.00262.x>
30. Franceschi, C., Salvioli, S., Garagnani, P., de Eguileor, M., Monti, D., Capri, M. (2017) Immunobiography and the heterogeneity of immune responses in the elderly: a focus on inflammaging and trained immunity. Front. Immunol. 8, 982. <https://doi.org/10.3389/fimmu.2017.00982>
31. Frasca, D., Riley, R. L., Blomberg, B. B. (2007) Aging murine B cells have decreased class switch induced by anti-CD40 or BAFF. Exp. Gerontol. 42, 192-203. <https://doi.org/10.1016/j.exger.2006.09.003>
32. Fülöp, T., Fóris, G., Wórum, I., Leövey, A. (1985) Age-dependent alterations of Fc γ receptor-mediated effector functions of human polymorphonuclear leucocytes. Clin. Exp. Immunol. 61, 425-432.
33. Fulop, T., Larbi, A., Kotb, R., De Angelis, F., Pawelec, G. (2011) Aging, immunity, and cancer. Discov. Med. 11.
34. Garg, S. K., Delaney, C., Toubai, T., Ghosh, A., Reddy, P., Banerjee, R., Yung, R. (2014) Aging is associated with increased regulatory T cell function. Aging Cell 13, 441-448. <https://doi.org/10.1111/acel.12191>
35. Geiger, T. L., Sun, J. C. (2016) Development and maturation of natural killer cells. Curr. Opin. Immunol. 39, 82-89. <https://doi.org/10.1016/j.coi.2016.01.007>
36. George, A. J., Ritter, M. A. (1996) Thymic involution with ageing: obsolescence or good housekeeping? Immunol. Today 17, 267-272. <https://doi.org/10.1016/0167-5699(96)80543-3>
37. Giunta, B., Rezai-Zadeh, K., Tan, J. (2010) Impact of the CD40-CD40L dyad in Alzheimer’s disease. CNS Neurol. Disord. Drug Targets 9, 149-155. <https://doi.org/10.2174/187152710791012099>
38. Godlove, J., Chiu, W. K., Weng, N. P. (2007) Gene expression and generation of CD28- CD8 T cells mediated by interleukin 15. Exp. Gerontol. 42, 412-415. <https://doi.org/10.1016/j.exger.2006.11.015>
39. Goronzy, J. J., Hu, B., Kim, C., Jadhav, R. R., Weyand, C. M. (2018) Epigenetics of T cell aging. J. Leukoc. Biol. 104, 691-699. <https://doi.org/10.1002/JLB.1RI0418-160R>
40. Goronzy, J. J., Lee, W. W., Weyand, C. M. (2007) Aging and T cell diversity. Exp. Gerontol. 42, 400-406. <https://doi.org/10.1016/j.exger.2006.11.016>
41. Gregg, R., Smith, C. M., Clark, F. J., Dunnion, D., Khan, N., Chakraverty, R., Nayak, L., Moss, P. A. (2005) The number of human peripheral blood CD4+ CD25high regulatory T cells increases with age. Clin. Exp. Immunol. 140, 540-546. <https://doi.org/10.1111/j.1365-2249.2005.02798.x>
42. Grolleau-Julius, A., Garg, M. R., Mo, R., Stoolman, L. L., Yung, R. L. (2006) Effect of aging on bone marrow-derived murine CD11c+CD4–CD8α– dendritic cell function. J. Gerontol. A Biol. Sci. Med. Sci. 61, 1039-1047. <https://doi.org/10.1093/gerona/61.10.1039>
43. Grossman, W. J., Verbsky, J. W., Tollefsen, B. L., Kemper, C., Atkinson, J. P., Ley, T. J. (2004) Differential expression of granzymes A and B in human cytotoxic lymphocyte subsets and T regulatory cells. Blood 104, 2840-2848. <https://doi.org/10.1182/blood-2004-03-0859>
44. Grubor-Bauk, B., Simmons, A., Mayrhofer, G., Speck, P. G. (2003) Impaired clearance of herpes simplex virus type 1 from mice lacking CD1d or NKT cells expressing the semivariant V α 14-J α 281 TCR. J. Immunol. 170, 1430-1434. <https://doi.org/10.4049/jimmunol.170.3.1430>
45. Gunn, M. D. (2003) Chemokine mediated control of dendritic cell migration and function. Semin. Immunol. 15, 271-276. <https://doi.org/10.1016/j.smim.2003.08.004>
46. Han, S., Yang, K., Ozen, Z., Peng, W., Marinova, E., Kelsoe, G., Zheng, B. (2003) Enhanced differentiation of splenic plasma cells but diminished long-lived high-affinity bone marrow plasma cells in aged mice. J. Immunol. 170, 1267-1273. <https://doi.org/10.4049/jimmunol.170.3.1267>
47. Harman, D. (1972) Free radical theory of aging: dietary implications. Am. J. Clin. Nutr. 25, 839-843. <https://doi.org/10.1093/ajcn/25.8.839>
48. Hayek, M. G., Mura, C., Wu, D., Beharka, A. A., Han, S. N., Paulson, K. E., Hwang, D., Meydani, S. N. (1997) Enhanced expression of inducible cyclooxygenase with age in murine macrophages. J. Immunol. 159, 2445-2451. <https://doi.org/10.4049/jimmunol.159.5.2445>
49. Herrero, C., Marques, L., Lloberas, J., Celada, A. (2001) IFN- γ-dependent transcription of MHC class II IA is impaired in macrophages from aged mice. J. Clin. Invest. 107, 485-493. <https://doi.org/10.1172/JCI11696>
50. Isobe, K. I., Nishio, N., Hasegawa, T. (2017) Immunological aspects of age-related diseases. World J. Biol. Chem. 8, 129-137. <https://doi.org/10.4331/wjbc.v8.i2.129>
51. Iyer, G. Y. N., Islam, M. F., Quastel, J. H. (1961) Biochemical aspects of phagocytosis. Nature 192, 535-541. <https://doi.org/10.1038/192535a0>
52. Jackaman, C., Radley-Crabb, H. G., Soffe, Z., Shavlakadze, T., Grounds, M. D., Nelson, D. J. (2013) Targeting macrophages rescues age-related immune deficiencies in C57BL/6J geriatric mice. Aging Cell 12, 345-357. <https://doi.org/10.1111/acel.12062>
53. Jing, Y., Shaheen, E., Drake, R. R., Chen, N., Gravenstein, S., Deng, Y. (2009) Aging is associated with a numerical and functional decline in plasmacytoid dendritic cells, whereas myeloid dendritic cells are relatively unaltered in human peripheral blood. Hum. Immunol. 70, 777-784. <https://doi.org/10.1016/j.humimm.2009.07.005>
54. Jones, S. C., Clise-Dwyer, K., Huston, G., Dibble, J., Eaton, S., Haynes, L., Swain, S. L. (2008) Impact of post-thymic cellular longevity on the development of age-associated CD4+ T cell defects. J. Immunol. 180, 4465-4475. <https://doi.org/10.4049/jimmunol.180.7.4465>
55. Karre, K. (2008) Natural killer cell recognition of missing self. Nat. Immunol. 9, 477-480. <https://doi.org/10.1038/ni0508-477>
56. Kennedy, R. B., Ovsyannikova, I. G., Haralambieva, I. H., Oberg, A. L., Zimmermann, M. T., Grill, D. E., Poland, G. A. (2016) Immunosenescence-related transcriptomic and immunologic changes in older individuals following influenza vaccination. Front. Immunol. 7, 450. <https://doi.org/10.3389/fimmu.2016.00450>
57. Kuro-o, M., Matsumura, Y., Aizawa, H., Kawaguchi, H., Suga, T., Utsugi, T., Ohyama, Y., Kurabayashi, M., Kaname, T., Kume, E., Iwasaki, H., Iida, A., Shiraki-Iida, T., Nishikawa, S., Nagai, R., Nabeshima, Y. I. (1997) Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390, 45-51. <https://doi.org/10.1038/36285>
58. Kurosu, H., Yamamoto, M., Clark, J. D., Pastor, J. V., Nandi, A., Gurnani, P., McGuinness, O. P., Chikuda, H., Yamaguchi, M., Kawaguchi, H., Shimomura, I., Takayama, Y., Herz, J., Kahn, C. R., Rosenblatt, K. P., Kuro-o, M. (2005) Suppression of aging in mice by the hormone Klotho. Science 309, 1829-1833. <https://doi.org/10.1126/science.1112766>
59. Lederman, S., Yellin, M. J., Cleary, A. M., Pernis, A., Inghirami, G., Cohn, L. E., Covey, L. R., Lee, J. J., Rothman, P., Chess, L. (1994) T-BAM/CD40-L on helper T lymphocytes augments lymphokine-induced B cell Ig isotype switch recombination and rescues B cells from programmed cell death. J. Immunol. 152, 2163-2171. <https://doi.org/10.4049/jimmunol.152.5.2163>
60. Lee, B. M., Lee, S. K., Kim, H. S. (1998) Inhibition of oxidative DNA damage, 8-OHdG, and carbonyl contents in smokers treated with antioxidants. Cancer Lett. 132, 219-227. <https://doi.org/10.1016/S0304-3835(98)00227-4>
61. Linehan, E., Fitzgerald, D. C. (2015) Ageing and the immune system: focus on macrophages. Eur. J. Microbiol. Immunol. (Bp) 5, 14-24. <https://doi.org/10.1556/EuJMI-D-14-00035>
62. Lloberas, J., Celada, A. (2002) Effect of aging on macrophage function. Exp. Gerontol. 37, 1325-1331. <https://doi.org/10.1016/S0531-5565(02)00125-0>
63. Lu, T., Finkel, T. (2008) Free radicals and senescence. Exp. Cell Res. 314, 1918-1922. <https://doi.org/10.1016/j.yexcr.2008.01.011>
64. Lung, T. L., Saurwein-Teissl, M., Parson, W., Schonitzer, D., Grubeck-Loebenstein, B. (2000) Unimpaired dendritic cells can be derived from monocytes in old age and can mobilize residual function in senescent T cells. Vaccine 18, 1606-1612. <https://doi.org/10.1016/S0264-410X(99)00494-6>
65. Mallevaey, T., Selvanantham, T. (2012) Strategy of lipid recognition by invariant natural killer T cells: ‘one for all and all for one’. Immunology 136, 273-282. <https://doi.org/10.1111/j.1365-2567.2012.03580.x>
66. Martinez, F. O., Gordon, S. (2014) The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000 Prime Rep. 6, 13. <https://doi.org/10.12703/P6-13>
67. Mege, J. L., Capo, C., Michel, B., Gastaut, J. L., Bongrand, P. (1988) Phagocytic cell function in aged subjects. Neurobiol. Aging 9, 217-220. <https://doi.org/10.1016/S0197-4580(88)80054-X>
68. Messaoudi, I., Fischer, M., Warner, J., Park, B., Mattison, J., Ingram, D. K., Totonchy, T., Mori, M., Nikolich-Zugich, J. (2008) Optimal window of caloric restriction onset limits its beneficial impact on T cell senescence in primates. Aging Cell 7, 908-919. <https://doi.org/10.1111/j.1474-9726.2008.00440.x>
69. Metcalf, T. U., Wilkinson, P. A., Cameron, M. J., Ghneim, K., Chiang, C., Wertheimer, A. M., Hiscott, J. B., Nikolich- Zugich, J., Haddad, E. K. (2017) Human monocyte subsets are transcriptionally and functionally altered in aging in response to pattern recognition receptor agonists. J. Immunol. 199, 1405-1417. <https://doi.org/10.4049/jimmunol.1700148>
70. Miller, J. P., Allman, D. (2003) The decline in B lymphopoiesis in aged mice reflects loss of very early B-lineage precursors. J. Immunol. 171, 2326-2330. <https://doi.org/10.4049/jimmunol.171.5.2326>
71. Mocchegiani, E., Malavolta, M. (2004) NK and NKT cell functions in immunosenescence. Aging Cell 3, 177-184. <https://doi.org/10.1111/j.1474-9728.2004.00107.x>
72. Montecino-Rodriguez, E., Berent-Maoz, B., Dorshkind, K. (2013) Causes, consequences, and reversal of immune system aging. J. Clin. Invest. 123, 958-965. <https://doi.org/10.1172/JCI64096>
73. Muller, S., Dennemarker, J., Reinheckel, T. (2012) Specific functions of lysosomal proteases in endocytic and autophagic pathways. Biochim. Biophys. Acta 1824, 34-43. <https://doi.org/10.1016/j.bbapap.2011.07.003>
74. Nagel, J. E., Chopra, R. K., Chrest, F. J., McCoy, M. T., Schneider, E. L., Holbrook, N. J., Adler, W. H. (1988) Decreased proliferation, interleukin 2 synthesis, and interleukin 2 receptor expression are accompanied by decreased mRNA expression in phytohemagglutinin-stimulated cells from elderly donors. J. Clin. Invest. 81, 1096-1102. <https://doi.org/10.1172/JCI113422>
75. Nikolich-Zugich, J. (2008) Ageing and life-long maintenance of T cell subsets in the face of latent persistent infections. Nat. Rev. Immunol. 8, 512-522. <https://doi.org/10.1038/nri2318>
76. Ouyang, Q., Baerlocher, G., Vulto, I., Lansdorp, P. M. (2007) Telomere length in human natural killer cell subsets. Ann. N. Y. Acad. Sci. 1106, 240-252. <https://doi.org/10.1196/annals.1392.001>
77. Palmer, D. B. (2013) The effect of age on thymic function. Front. Immunol. 4, 316. <https://doi.org/10.3389/fimmu.2013.00316>
78. Pantano, C., Reynaert, N. L., van der Vliet, A., Janssen-Heininger, Y. M. (2006) Redox-sensitive kinases of the nuclear factor-κB signaling pathway. Antioxid. Redox Signal. 8, 1791-1806. <https://doi.org/10.1089/ars.2006.8.1791>
79. Pawelec, G. (2017) Age and immunity: What is “immunosenescence”? Exp. Gerontol. 105, 4-9. <https://doi.org/10.1016/j.exger.2017.10.024>
80. Pence, B. D., Yarbro, J. R. (2018) Aging impairs mitochondrial respiratory capacity in classical monocytes. Exp. Gerontol. 108, 112-117. <https://doi.org/10.1016/j.exger.2018.04.008>
81. Phipps, R. P., Stein, S. H., Roper, R. L. (1991) A new view of prostaglandin E regulation of the immune response. Immunol. Today 12, 349-352. <https://doi.org/10.1016/0167-5699(91)90064-Z>
82. Pietschmann, P., Hahn, P., Kudlacek, S., Thomas, R., Peterlik, M. (2000) Surface markers and transendothelial migration of dendritic cells from elderly subjects. Exp. Gerontol. 35, 213-224. <https://doi.org/10.1016/S0531-5565(99)00089-3>
83. Prelog, M. (2006) Aging of the immune system: a risk factor for autoimmunity? Autoimmun. Rev. 5, 136-139. <https://doi.org/10.1016/j.autrev.2005.09.008>
84. Przemska-Kosicka, A., Childs, C. E., Maidens, C., Dong, H., Todd, S., Gosney, M. A., Tuohy, K. M., Yaqoob, P. (2018) Age-related changes in the natural killer cell response to seasonal influenza vaccination are not influenced by a synbiotic: a randomised controlled trial. Front. Immunol. 9, 591. <https://doi.org/10.3389/fimmu.2018.00591>
85. Rammensee, H. G. (2006) Peptides made to order. Immunity 25, 693-695. <https://doi.org/10.1016/j.immuni.2006.10.008>
86. Richer, B. C., Salei, N., Laskay, T., Seeger, K. (2018) Changes in neutrophil metabolism upon activation and aging. Inflammation 41, 710-721. <https://doi.org/10.1007/s10753-017-0725-z>
87. Rowley, M., Buchanan, H., Mackay, I. (1968) Reciprocal change with age in antibody to extrinsic and intrinsic antigens. Lancet 292, 24-26. <https://doi.org/10.1016/S0140-6736(68)92893-6>
88. Salam, N., Rane, S., Das, R., Faulkner, M., Gund, R., Kandpal, U., Lewis, V., Mattoo, H., Prabhu, S., Ranganathan, V., Durdik, J., George, A., Rath, S., Bal, V. (2013) T cell ageing: effects of age on development, survival & function. Indian J. Med. Res. 138, 595-608.
89. Saurwein-Teissl, M., Lung, T. L., Marx, F., Gschosser, C., Asch, E., Blasko, I., Parson, W., Bock, G., Schonitzer, D., Trannoy, E., Grubeck-Loebenstein, B. (2002) Lack of antibody production following immunization in old age: association with CD8+CD28- T cell clonal expansions and an imbalance in the production of Th1 and Th2 cytokines. J. Immunol. 168, 5893-5899. <https://doi.org/10.4049/jimmunol.168.11.5893>
90. Schmitt, V., Rink, L., Uciechowski, P. (2013) The Th17/Treg balance is disturbed during aging. Exp. Gerontol. 48, 1379-1386. <https://doi.org/10.1016/j.exger.2013.09.003>
91. Sharma, S., Dominguez, A. L., Lustgarten, J. (2006) High accumulation of T regulatory cells prevents the activation of immune responses in aged animals. J. Immunol. 177, 8348-8355. <https://doi.org/10.4049/jimmunol.177.12.8348>
92. Solana, R., Alonso, M. C., Pena, J. (1999) Natural killer cells in healthy aging. Exp. Gerontol. 34, 435-443. <https://doi.org/10.1016/S0531-5565(99)00008-X>
93. Somech, R. (2011) T cell receptor excision circles in primary immunodeficiencies and other T cell immune disorders. Curr. Opin. Allergy Clin. Immunol. 11, 517-524. <https://doi.org/10.1097/ACI.0b013e32834c233a>
94. Stahl, E. C., Brown, B. N. (2015) Cell therapy strategies to combat immunosenescence. Organogenesis 11, 159-172. <https://doi.org/10.1080/15476278.2015.1120046>
95. Steger, M. M., Maczek, C., Grubeck-Loebenstein, B. (1996) Morphologically and functionally intact dendritic cells can be derived from the peripheral blood of aged individuals. Clin. Exp. Immunol. 105, 544-550. <https://doi.org/10.1046/j.1365-2249.1996.d01-790.x>
96. Sutherland, J. S., Goldberg, G. L., Hammett, M. V., Uldrich, A. P., Berzins, S. P., Heng, T. S., Blazar, B. R., Millar, J. L., Malin, M. A., Chidgey, A. P., Boyd, R. L. (2005) Activation of thymic regeneration in mice and humans following androgen blockade. J. Immunol. 175, 2741-2753. <https://doi.org/10.4049/jimmunol.175.4.2741>
97. Swain, S., Clise-Dwyer, K., Haynes, L. (2005) Homeostasis and the age-associated defect of CD4 T cells. Semin. Immunol. 17, 370-377. <https://doi.org/10.1016/j.smim.2005.05.007>
98. Tang, D., Tao, S., Chen, Z., Koliesnik, I. O., Calmes, P. G., Hoerr, V., Han, B., Gebert, N., Zornig, M., Loffler, B., Morita, Y., Rudolph, K. L. (2016) Dietary restriction improves repopulation but impairs lymphoid differentiation capacity of hematopoietic stem cells in early aging. J. Exp. Med. 213, 535-553. <https://doi.org/10.1084/jem.20151100>
99. Tesar, B. M., Walker, W. E., Unternaehrer, J., Joshi, N. S., Chandele, A., Haynes, L., Kaech, S., Goldstein, D. R. (2006) Murine [corrected] myeloid dendritic cell-dependent toll-like receptor immunity is preserved with aging. Aging Cell 5, 473-486. <https://doi.org/10.1111/j.1474-9726.2006.00245.x>
100. Tomay, F., Wells, K., Duong, L., Tsu, J. W., Dye, D. E., Radley- Crabb, H. G., Grounds, M. D., Shavlakadze, T., Metharom, P., Nelson, D. J., Jackaman, C. (2018) Aged neutrophils accumulate in lymphoid tissues from healthy elderly mice and infiltrate T- and B cell zones. Immunol Cell Biol. 96, 831-840. <https://doi.org/10.1111/imcb.12046>
101. Trapani, J. A. (2001) Granzymes: a family of lymphocyte granule serine proteases. Genome Biol. 2, 1-7. <https://doi.org/10.1186/gb-2001-2-12-reviews3014>
102. Tsaknaridis, L., Spencer, L., Culbertson, N., Hicks, K., LaTocha, D., Chou, Y. K., Whitham, R. H., Bakke, A., Jones, R. E., Offner, H., Bourdette, D. N., Vandenbark, A. A. (2003) Functional assay for human CD4+CD25+ Treg cells reveals an age-dependent loss of suppressive activity. J. Neurosci. Res. 74, 296-308. <https://doi.org/10.1002/jnr.10766>
103. Tsuboi, I., Morimoto, K., Hirabayashi, Y., Li, G. X., Aizawa, S., Mori, K. J., Kanno, J., Inoue, T. (2004) Senescent B lymphopoiesis is balanced in suppressive homeostasis: decrease in interleukin-7 and transforming growth factor-β levels in stromal cells of senescence-accelerated mice. Exp. Biol. Med. (Maywood) 229, 494-502. <https://doi.org/10.1177/153537020422900607>
104. Uchio, R., Hirose, Y., Murosaki, S., Yamamoto, Y., Ishigami, A. (2015) High dietary intake of vitamin C suppresses agerelated thymic atrophy and contributes to the maintenance of immune cells in vitamin C-deficient senescence marker protein-30 knockout mice. Br. J. Nutr. 113, 603-609. <https://doi.org/10.1017/S0007114514003857>
105. Updyke, L. W., Cocke, K. S., Wierda, D. (1993) Age-related changes in production of interleukin-7 (IL-7) by murine long-term bone marrow cultures (LTBMC). Mech. Ageing Dev. 69, 109-117. <https://doi.org/10.1016/0047-6374(93)90075-3>
106. van der Geest, K. S., Abdulahad, W. H., Tete, S. M., Lorencetti, P. G., Horst, G., Bos, N. A., Kroesen, B. J., Brouwer, E., Boots, A. M. (2014) Aging disturbs the balance between effector and regulatory CD4+ T cells. Exp. Gerontol. 60, 190-196. <https://doi.org/10.1016/j.exger.2014.11.005>
107. Waugh, S. M., Harris, J. L., Fletterick, R., Craik, C. S. (2000) The structure of the pro-apoptotic protease granzyme B reveals the molecular determinants of its specificity. Nat. Struct Biol. 7, 762-765. <https://doi.org/10.1038/78992>
108. Weinberger, B., Lazuardi, L., Weiskirchner, I., Keller, M., Neuner, C., Fischer, K. H., Neuman, B., Wurzner, R., Grubeck-Loebenstein, B. (2007) Healthy aging and latent infection with CMV lead to distinct changes in CD8+ and CD4+ T cell subsets in the elderly. Hum. Immunol. 68, 86-90. <https://doi.org/10.1016/j.humimm.2006.10.019>
109. Weng, N. P., Akbar, A. N., Goronzy, J. (2009) CD28- T cells: their role in the age-associated decline of immune function. Trends Immunol. 30, 306-312. <https://doi.org/10.1016/j.it.2009.03.013>
110. Weyand, C. M., Brandes, J. C., Schmidt, D., Fulbright, J. W., Goronzy, J. J. (1998) Functional properties of CD4+ CD28- T cells in the aging immune system. Mech. Ageing Dev. 102, 131-147. <https://doi.org/10.1016/S0047-6374(97)00161-9>
111. Xu, F., Zhang, C., Zou, Z., Fan, E. K. Y., Chen, L., Li, Y., Billiar, T. R., Wilson, M. A., Shi, X., Fan, J. (2017) Aging-related Atg5 defect impairs neutrophil extracellular traps formation. Immunology 151, 417-432. <https://doi.org/10.1111/imm.12740>
112. Xu, W., Larbi, A. (2017) Immunity and inflammation: From Jekyll to Hyde. Exp. Gerontol. 107, 98-101. <https://doi.org/10.1016/j.exger.2017.11.018>
113. Yamamoto, Y., Gaynor, R. B. (2001) Role of the NF-κB pathway in the pathogenesis of human disease states. Curr. Mol. Med. 1, 287-296. <https://doi.org/10.2174/1566524013363816>
114. Yang, H. W., Youm, Y. H., Dixit, V. D. (2009) Inhibition of thymic adipogenesis by caloric restriction is coupled with reduction in age-related thymic involution. J. Immunol. 183, 3040-3052. <https://doi.org/10.4049/jimmunol.0900562>
115. Zhao, L., Sun, L., Wang, H., Ma, H., Liu, G., Zhao, Y. (2007) Changes of CD4+CD25+Foxp3+ regulatory T cells in aged Balb/c mice. J. Leukoc. Biol. 81, 1386-1394. <https://doi.org/10.1189/jlb.0506364>
116. Zinger, A., Cho, W. C., Ben-Yehuda, A. (2017) Cancer and aging – the inflammatory connection. Aging Dis. 8, 611-627. <https://doi.org/10.14336/AD.2016.1230>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Archive