Fol. Biol. 2019, 65, 64-69
https://doi.org/10.14712/fb2019065020064
The CD34+ Cell Number Alone Predicts Retention of the Human Fat-Graft Volume in a Nude Mouse Model
References
1. 2017) The science behind autologous fat grafting. Ann. Med. Surg. 24, 65-73.
< , E., Grieco, M. P., Raposio, E. (https://doi.org/10.1016/j.amsu.2017.11.001>
2. 2017) Adipose tissue-derived stromal vascular fraction in regenerative medicine: a brief review on biology and translation. Stem Cell Res. Ther. 8, 145.
< , P., Majumdar A. S. (https://doi.org/10.1186/s13287-017-0598-y>
3. 2018) Positive effect of incubated adipose-derived mesenchymal stem cells on microfat graft survival. J. Craniofac. Surg. 29, 243-247.
< , J. W., Kim, S.-C., Park, E.-J., Lee, J.-A., Jeong, W. S. (https://doi.org/10.1097/SCS.0000000000004071>
4. 2006) Structural fat grafting: more than a permanent filler. Plast. Reconstr. Surg. 118(Suppl 3), 108S-120S.
< , S. R. (https://doi.org/10.1097/01.prs.0000234610.81672.e7>
5. 2007) Fat grafting to the breast revisited: safety and efficacy. Plast. Reconstr. Surg. 119, 775-785; Discussion 786-777.
< , S. R., Saboeiro, A. P. (https://doi.org/10.1097/01.prs.0000252001.59162.c9>
6. 2013) The survival condition and immunoregulatory function of adipose stromal vascular fraction (SVF) in the early stage of nonvascularized adipose transplantation. PLoS One 8, e80364.
< , Z., Peng, Z., Chang, Q., Lu, F. (https://doi.org/10.1371/journal.pone.0080364>
7. 2013) Fate of adipose-derived stromal vascular fraction cells after co-implantation with fat grafts: evidence of cell survival and differentiation in ischemic adipose tissue. Plast. Reconstr. Surg. 132, 363-373.
< , S., Luan, J., Xin, M., Wang, Q., Xiao. R, Gao Y. (https://doi.org/10.1097/PRS.0b013e31829588b3>
8. 2007) Adipose-derived stem cells for regenerative medicine. Circ. Res. 100, 1249-1260.
< , J. M., Katz, A. J., Bunnell, B. A. (https://doi.org/10.1161/01.RES.0000265074.83288.09>
9. 2011) Effects of expanded human adipose tissue-derived mesenchymal stem cells on the viability of cryopreserved fat grafts in the nude mouse. Int. J. Med. Sci. 8, 231-238.
< , M. S., Jung, J. Y., Shin, I. S., Choi, E. W., Kim, J. H., Kang, S. K., Ra, J. C. (https://doi.org/10.7150/ijms.8.231>
10. 2016) Mesenchymal stem cells: identification, phenotypic characterization, biological properties and potential for regenerative medicine through biomaterial micro-engineering of their niche. Methods 99, 62-68.
< , J., Dinnyes, A., Memic, A., Khademhosseini, A., Mobasheri, A. (https://doi.org/10.1016/j.ymeth.2015.09.016>
11. 2017) Optimization and standardization of the immunodeficient mouse model for assessing fat grafting outcomes. Plast. Reconstr. Surg. 140, 1185-1194.
< , L. E., Jones, T. L., Silowash, R., Theisen, B., DiBernardo, G., Lu, A., Yi, B., Marra, K. G., Rubin, J. P. (https://doi.org/10.1097/PRS.0000000000003868>
12. 2018) Cell-assisted lipotransfer: Friend or foe in fat grafting? Systematic review and meta-analysis. J. Tissue Eng. Regen. Med. 12, e1237-e1250.
< , J., Varin, A., Gilhodes, J., Bertheuil, N., Grolleau, J. L., Brie, J., Usseglio J., Sensebe L., Filleron, T., Chaput, B. (https://doi.org/10.1002/term.2524>
13. 2006) Cell-assisted lipo-transfer: supportive use of human adipose-derived cells for soft tissue augmentation with lipoinjection. Tissue Eng. 12, 3375-3382.
< , D., Sato, K., Gonda, K., Takaki, Y., Shigeura, T., Sato, T., Aiba-Kojima, E., Iizuka, F., Inoue, K., Suga, H., Yoshimura, K., (https://doi.org/10.1089/ten.2006.12.3375>
14. 1987) The biographical history of fat transplant surgery. AJCS 4, 85-87.
, J., Ftaiha, Z. (
15. 2013) Stem cell enrichment does not warrant a higher graft survival in lipofilling of the breast: a prospective comparative study. J. Plast. Reconstr. Aesthet. Surg. 66, 1494-1503.
< , H. H., Salmi, A., Miettinen, S., Mannerström, B., Saariniemi, K., Mikkonen, R., Kuokkanen H., Herold, C. (https://doi.org/10.1016/j.bjps.2013.06.002>
16. 2013) Prevalence of endogenous CD34+ adipose stem cells predicts human fat graft retention in a xenograft model. Plast. Reconstr. Surg. 132, 845-858.
< , B. J., Grahovac, T. L., Valentin, J. E., Chung, C. W., Bliley, J. M., Pfeifer, M. E., Roy, S. B., Dreifuss, S., Kelmendi- Doko, A., Kling, R. E., Ravuri, S. K., Marra, K. G., Donnenberg, V. S., Donnenberg, A. D., Rubin, J. P. (https://doi.org/10.1097/PRS.0b013e31829fe5b1>
17. 2016) Mechanisms of fat graft survival. Ann. Plast. Surg. 77(Suppl 1), S84-86.
< , L. L. Q. (https://doi.org/10.1097/SAP.0000000000000730>
18. 2016) Do stem cells have an effect when we fat graft? Ann. Plast. Surg. 76(Suppl 4), S359-363.
< , B. D., Vyas, K. S. (https://doi.org/10.1097/SAP.0000000000000658>
19. 2018) The potential of adipose-derived stem cell subpopulations in regenerative medicine. Regen. Med. 13, 357-360.
< , R. J., Reid, A. J. (https://doi.org/10.2217/rme-2018-0030>
20. 2005) The growing importance of fat in regenerative medicine. Trends Biotechnol. 23, 64-66.
< , B. M., Hedrick, M. H. (https://doi.org/10.1016/j.tibtech.2004.12.003>
21. 2016) Cell-assisted lipotransfer: a systematic review of its efficacy. Aesthetic Plast. Surg. 40, 309-318.
< , N. M., Quaade, M. L., Sørensen, J. A. (https://doi.org/10.1007/s00266-016-0613-1>
22. 2009) Adipose-derived stem/progenitor cells: roles in adipose tissue remodeling and potential use for soft tissue augmentation. Regen. Med. 4, 265-273.
< , K., Suga, H., Eto, H. (https://doi.org/10.2217/17460751.4.2.265>
23. 2018) The expression of marker genes during the differentiation of mesenchymal stromal cells. Adv. Clin. Exp. Med. 27, 717-723.
< , A. (https://doi.org/10.17219/acem/68386>
24. 2015) Adipocyte regeneration after free fat transplantation: promotion by stromal vascular fraction cells. Cell Transplant. 24, 49-62.
< , M., Dong, Z., Gao, J., Liao, Y., Xue, J., Yuan, Y., Liu L., Chang, Q., Lu, F. (https://doi.org/10.3727/096368913X675133>
25. 2009) Stromal vascular progenitors in adult human adipose tissue. Cytometry A 77, 22-30.
, L., Donenberg, V. S., Pfeifer, M. E., Meyer, E. M., Peault, B., Rubin, J. P., Donnenberg, A. D. (