Fol. Biol. 2019, 65, 70-87
https://doi.org/10.14712/fb2019065020070
Calcitriol and Punica Granatum Extract Concomitantly Attenuate Cardiomyopathy of Diabetic Mother Rats and Their Neonates via Activation of Raf/MEK/ERK Signalling and Mitigation of Apoptotic Pathways
References
1. 2016) Sitagliptin attenuates cardiomyopathy by modulating the JAK/STAT signaling pathway in experimental diabetic rats. Drug Design Dev. Therapy 10, 2095-2107.
, N. M., Al-Rasheed, N. M., Hasan, I. H., Al- Amin, M. A., Al-Ajmi, H. N., Mahmoud, A. M. (
2. 2006) Vitamin D in chronic kidney disease: A systemic role for selective vitamin D receptor activation. Kidney Int. 69, 33-43.
< , D. L. (https://doi.org/10.1038/sj.ki.5000045>
3. 2012) Anti-proliferative activity and protection against oxidative DNA damage by punicalagin isolated from pomegranate husk. Food Res. Int. 49, 345-353.
< , F., Munagala, R., Vadhanam, M. V., Kausar, H., Jeyabalan, J., Schultz, D. J., Gupta, R. C. (https://doi.org/10.1016/j.foodres.2012.07.059>
4. 2009) Vitamin D reduces the expression of collagen and key profibrotic factors by inducing an antifibrotic phenotype in mesenchymal multipotent cells. J. Endocrinol. 200, 207-221.
< , J. N., Norris, K. C. (https://doi.org/10.1677/JOE-08-0241>
5. 2009) Diabetic cardiomyopathy. Clin. Sci. (Lond) 116, 741-760.
< , O., Al-Sunni, A., Khavandi, K., Khavandi, A., Withers, S., Greenstein, A., Heagerty, A. M., Malik, R. A. (https://doi.org/10.1042/CS20080500>
6. 2002) Pomegranate juice flavonoids inhibit low-density lipoprotein oxidation and cardiovascular diseases: studies in atherosclerotic mice and in humans. Drugs Exp. Clin. Res. 28, 49-62.
, M., Dornfeld, L., Kaplan, M., Coleman, R., Gaitini, D., Nitecki, S., Hofman, A., Rosenblat, M., Volkova, N., Presser, D., Attias, J., Hayek, T., Fuhrman, B. (
7. 2018) Experimental diabetes impairs maternal reproductive performance in pregnant Wistar rats and their offspring. Syst. Biol. Reprod. Med. 64, 60-70.
< , L., Gómez, T., Molina, J. L., Álvarez, A., Chaviano, C., Clapés, S. (https://doi.org/10.1080/19396368.2017.1395928>
8. 1980) A simple assay for catalase determination. Cell Biol. Monogr. 7, 44-74.
, P., Karmer, R., Paverka, M. (
9. 2003) French multicentric survey of outcome of pregnancy in women with pregestational diabetes. Diabetes Care 26, 2990-2993.
, P., Chabbert-Buffet, N., d’Ercole, C., Floriot, M., Fontaine, P., Fournier, A., Gillet, J. Y., Gin, H., Grandperret- Vauthier, S., Geudj, A. M., Guionnet, B., Hauguel-de-Mouzon, S., Hieronimus, S., Hoffet, M., Jullien, D., Lamotte, M. F., Lejeune, V., Lepercq, J., Lorenzi, F., Mares, P., Miton, A., Penfornis, A., Pfister, B., Renard, E., Rodier, M., Roth, P., Sery, G. A., Timsit, J., Valat, A. S., Vambergue, A., Verier-Mine, O., Diabetes and Pregnancy Group, France (
10. 2013) Mild oxidative damage in the diabetic rat heart is attenuated by glyoxalase- 1 overexpression. Int. J. Mol. Sci. 14, 15724-15739.
< , O., de Vos-Houben, J. M., Niessen, P. M., Miyata, T., van Nieuwenhoven, F., Janssen, B. J, Hageman, G., Stehouwer, C. D., Schalkwijk, C. G (https://doi.org/10.3390/ijms140815724>
11. 2015) Punicalagin, an active component in pomegranate, ameliorates cardiac mitochondrial impairment in obese rats via AMPK activation. Sci. Rep. 5, 14014.
< , K., Xu, J., Pu, W., Dong, Z., Sun, L., Zang, W., Gao., F., Zhang, Y., Feng, Z., Liu, J. (https://doi.org/10.1038/srep14014>
12. 2012) Overexpression of angiopoietin-2 impairs myocardial angiogenesis and exacerbates cardiac fibrosis in the diabetic db/db mouse model. Am. J. Physiol. Heart Circ. Physiol. 302, H1003-1012.
< , J. X., Zeng, H., Reese, J, Aschner, J. L., Meyrick, B. (https://doi.org/10.1152/ajpheart.00866.2011>
13. 2011) Cardiomyocyte- specific deletion of the vitamin D receptor gene results in cardiac hypertrophy. Circulation 124, 1838-1847.
< , S., Law, C. S., Grigsby, C. L., Olsen, K., Hong, T. T., Zhang, Y., Yeghiazarians, Y., Gardner, D. G. (https://doi.org/10.1161/CIRCULATIONAHA.111.032680>
14. 2018) Dihydromyricetin attenuates myocardial hypertrophy induced by transverse aortic constriction via oxidative stress inhibition and SIRT3 pathway enhancement. Int. J. Mol. Sci. 19, pii: E2592
< , Y., Luo, H. Q., Sun, L. L., Xu, M. T., Yu, J., Liu, L. L., Zhang, J. Y., Wang, Y. Q., Wang, H. X., Bao, X. F., Meng, G. L. (https://doi.org/10.3390/ijms19092592>
15. 2003) The dark side of Ras: regulation of apoptosis. Oncogene 22, 8999–9006.
< , A. D., Der, C. J. (https://doi.org/10.1038/sj.onc.1207111>
16. 2011) Genotoxicity and fetal abnormality in streptozotocin-induced diabetic rats exposed to cigarette smoke prior to and during pregnancy. Exp. Clin. Endocrinol. Diabetes 119, 549-553.
< , D. C., Volpato, G. T., Sinzato, Y. K., Lima, P. H., Souza, M. S., Iessi, I. L., Kiss, A. C., Takaku, M., Rudge, M. V., Calderon, I. M. (https://doi.org/10.1055/s-0031-1277193>
17. 2013a) Diabetic rats exercised prior to and during pregnancy: Maternal reproductive outcome, biochemical profile, and frequency of fetal anomalies. Reprod. Sci. 20, 730-738.
< , D. C., Silva, H. P., Vaz, G. F., Vasques-Silva, F. A., Calderon, I. M., Rudge, M. V., Campos, K. E., Volpato, G. T. (https://doi.org/10.1177/1933719112461186>
18. 2013b) Mild diabetes models and their maternal-fetal repercussions. J. Diabetes Res. 2013, 473575.
< , D. C., Sinzato, Y. K., Bueno, A., Netto, A. O., Dallaqua, B., Gallego, F. Q., Iessi I. L., Corvino, S. B., Serrano, R. G., Marini, G., Piculo, F., Calderon, I. M., Rudge, M. V. (https://doi.org/10.1155/2013/473575>
19. 2014) Streptozotocininduced diabetes models: pathophysiological mechanisms and fetal outcomes. Biomed. Res. Int. 2014, 819065.
< , D.C., Netto, A. O., Iessi, I. L., Gallego, F. Q., Corvino, S. B., Dallaqua, B., Sinzato, Y. K., Bueno, A., Calderon, I. M., Rudge, M. V. (https://doi.org/10.1155/2014/819065>
20. 2012) Vitamin D signaling in adipose tissue. Br. J. Nutr. 108, 1915-1923.
< , C., Gao, D., Wilding, J., Trayhurn, P., Bing, C. (https://doi.org/10.1017/S0007114512003285>
21. 2007) Decompensation of cardiac hypertrophy: cellular mechanisms and novel therapeutic targets. Physiology (Bethesda) 22, 56-64.
, A., Dorn, G. W. (
22. 2005) The human peroxisome proliferator- activated receptor δ gene is a primary target of 1α,25- dihydroxyvitamin D3 and its nuclear receptor. J. Mol. Biol. 349, 248-260.
< , T.W., Väisänen, S., Frank, C., Molnár, F., Sinkkonen, L., Carlberg, C. (https://doi.org/10.1016/j.jmb.2005.03.060>
23. 2011) Perinatal and infant mortality in term and preterm births among women with type 1 diabetes. Obstet. Gynecol. Surv. 54, 2771-2778.
, I., Vangen, S., Hanssen, K. F., Vollset, S. E., Henriksen, T., Joner, G., Stene, L. C. (
24. 2004) Concentrated pomegranate juice improves lipid profiles in diabetic patients with hyperlipidemia. J. Med. Food 7, 305-308.
< , A., Tahbaz, F., Gaieni, I., Alavi-Majd, H., Azadbakht, L. (https://doi.org/10.1089/jmf.2004.7.305>
25. 2015) Rutin administration attenuates myocardial dysfunction in diabetic rats. Cardiovasc. Diabetol. 14, 90.
< , J. F., Muzio B. P., Rosa, C. M., Nascimento, A. F., Sugizaki, M. M., Fernandes, A. A., Cicogna, A. C., Padovani, C. R., Okoshi, M. P., Okoshi, K. (https://doi.org/10.1186/s12933-015-0255-7>
26. 2015) Serum 25-hydroxyvitamin D: a predictor of macrovascular and microvascular complications in patients with type 2 diabetes. Diabetes Care 38, 521-528.
< , M., Sullivan D. R., Veillard, A. S., McCorquodale, T., Straub, I. R., Scott, R., Laakso, M., Topliss, D., Jenkins, A. J., Blankenberg, S., Burton, A., Keech, A. C; FIELD Study Investigators (https://doi.org/10.2337/dc14-0180>
27. 2014) 1,25-Vitamin D3 promotes cardiac differentiation through modulation of the WNT signaling pathway. J. Mol. Endocrinol. 53, 303-317.
< S. M., Garcia, L. A., Contreras, J. R., Norris, K. C., Ferrini, M. G., Artaza, J. N. (https://doi.org/10.1530/JME-14-0168>
28. 2006) Methods of detecting atherosclerosis in non-cardiac surgical patients; the role of biochemical markers. Br. J. Anaesth. 97, 758-769.
< G. M., Sear, J. W., Foex, P. (https://doi.org/10.1093/bja/ael303>
29. Ibrahim, E. H., Kilany, M., Ghramh, H. A., Khan, K. A, Islam, S. (2018) Cellular proliferation/cytotoxicity and antimicrobial potentials of green synthesized silver nanoparticles (AgNPs) using Juniperus procera. Saudi J. Biol. Sci.
<https://doi.org/10.1016/j.sjbs.2018.08.014>
30. 2016) Endothelin-1 overexpression exaggerates diabetes-induced endothelial dysfunction by altering oxidative stress. Am. J. Hypertens. 29, 1245-1251.
< , N., Ouerd, S., Mian, M. O., Gornitsky, J., Barhoumi, T., Schiffrin, E. L. (https://doi.org/10.1093/ajh/hpw078>
31. 2013) Cardiac dysfunction and oxidative stress in the metabolic syndrome: an update on antioxidant therapies. Curr. Pharm. Des. 19, 4806-4817.
< , O., Boudina, S. (https://doi.org/10.2174/1381612811319270003>
32. 2012) Pomegranate peel and fruit extracts: a review of potential anti-inflammatory and anti-infective effects. J. Ethnopharmacol. 143, 397-405.
< , T., Sestili, P., Akhtar, S. (https://doi.org/10.1016/j.jep.2012.07.004>
33. 2010) Azelnidipine protects myocardium in hyperglycemia-induced cardiac damage. Cardiovasc. Diabetol. 9, 82.
< , V., Kumar, S., Puranik, A. S., Sitasawad, S. L. (https://doi.org/10.1186/1475-2840-9-82>
34. 2014) The burden of diabetes mellitus during pregnancy in low- and middle-income countries: a systematic review. Glob. Health Action 7, 23987.
< , L., Bezawada, N., Hussein, J., Bell, J. (https://doi.org/10.3402/gha.v7.23987>
35. 2011) Extracellular signal-regulated kinases 1 and 2 regulate the balance between eccentric and concentric cardiac growth. Circ. Res. 108, 176-183.
< , I., Davis, J., Tiburcy, M., Accornero, F., Saba-El-Leil, M. K., Maillet, M., York, A. J., Lorenz, J. N., Zimmermann, W. H., Meloche, S., Molkentin, J. D. (https://doi.org/10.1161/CIRCRESAHA.110.231514>
36. 2002) Obesity and the risk of heart failure. N. Engl. J. Med. 347, 305-313.
< , S, Evans, J. C., Levy, D., Wilson, P. W F., Benjamin, E. J., Larson, M. G., Kannel, W. B., Vasan, R. S. (https://doi.org/10.1056/NEJMoa020245>
37. 2001) Evaluation of lipid peroxidation and acid-base status in cord blood of newborns after diabetes in pregnancy. Przegl. Lek. 58, 120-123.
, M., Sledziewski, A., Telejko, B., Kowalska, I., Kretowski, A., Kinalska, I. (
38. 2009) Animal models for clinical and gestational diabetes: maternal and fetal outcomes. Diabetol. Metab. Syndr. 1, 21.
< , A. C., Lima, P. H., Sinzato, Y. K., Takaku, M., Takeno, M. A., Rudge, M. V., Damasceno, D. C (https://doi.org/10.1186/1758-5996-1-21>
39. 2015) Autophagy and mitophagy in diabetic cardiomyopathy. Biochim. Biophys. Acta 1852, 252-261.
< , S., Liang, Q. (https://doi.org/10.1016/j.bbadis.2014.05.020>
40. Larkin, P. (2011) Infrared and Raman Spectroscopy: Principles and Spectral Interpretation. Elsevier. ISBN 978-0-12-386984-5.
41. 2010) Antiinflammatory effects of Punica granatum Linne in vitro and in vivo. Food Chem. 118, 315-322.
< , C. J., Chen, L. G., Liang, W. L, Wang, C. C. (https://doi.org/10.1016/j.foodchem.2009.04.123>
42. 2003) Characterization of streptozotocin-induced diabetic rats and pharmacodynamics of insulin formulations. Biosci. Biotechnol. Biochem. 67, 2396-2401.
< , J. J., Yi, H. Y., Yang, J. W., Shin, J. S., Kwon, J. H., Kim, C. W. (https://doi.org/10.1271/bbb.67.2396>
43. 2014) Cardiac metabolism, inflammation, and peroxisome proliferator-activated receptors modulated by 1,25-dihydroxyvitamin D3 in diabetic rats. Int. J. Cardiol. 176, 151-157.
< , T. I., Kao, Y. H., Chen, Y. C., Tsai, W. C., Chung, C. C., Chen, Y. J. (https://doi.org/10.1016/j.ijcard.2014.07.021>
44. 2015) Bioactive properties of commercialised pomegranate (Punica granatum) juice: antioxidant, antiproliferative and enzyme inhibiting activities. Food Funct. 6, 2049-2205.
< , F., Prieto, J. M., Arbonés-Mainar, J. M., Valero, M. S., López, V. (https://doi.org/10.1039/C5FO00426H>
45. 2018) Profile of cardiac lipid metabolism in STZ-induced diabetic mice. Lipids Health Dis. 17, 231.
< , W., Yao, M., Wang, R., Shi, Y., Hou, L., Hou, Z., Lian, K., Zhang, N., Wang, Y., Li, W., Wang, W., Jiang, L. (https://doi.org/10.1186/s12944-018-0872-8>
46. 2006) Evaluation of antioxidant properties of pomegranate peel extract in comparison with pomegranate pulp extract. Food Chem. 96, 254-260.
< , Y., Guo C., Yang, J., Wei, J., Xu, J., Cheng, S. (https://doi.org/10.1016/j.foodchem.2005.02.033>
47. 2017) Pregestational type 2 diabetes mellitus induces cardiac hypertrophy in the murine embryo through cardiac remodeling and fibrosis. Am. J. Obstet. Gynecol. 217, 216.e1-216.e13.
< , X., Yang, P., Reece, E. A., Yang, P. (https://doi.org/10.1016/j.ajog.2017.04.008>
48. 2004) MEK1-ERK2 signaling pathway protects myocardium from ischemic injury in vivo. Circulation 109, 1938-1941.
< , D. J., Bueno, O. F., Wilkins, B. J., Purcell, N. H., Kaiser, R. A., Lorenz, J. N., Voisin, L., Saba-El-Leil, M. K., Meloche, S., Pouysségur, J., Pagès, G., De Windt, L. J., Doevendans, P. A., Molkentin, J. D. (https://doi.org/10.1161/01.CIR.0000127126.73759.23>
49. 2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25, 402-408.
< , K. J., Schmittgen, T. D. (https://doi.org/10.1006/meth.2001.1262>
50. 2017) Diagnostic approaches for diabetic cardiomyopathy. Cardiovasc. Diabetol. 16, 28.
< , A., Tuñón, J., Orejas, M., Cortés, M., Egido, J., Lorenzo, O. (https://doi.org/10.1186/s12933-017-0506-x>
51. 2014) Type 2 diabetes and cardiovascular disease: have all risk factors the same strength? World J. Diabetes 5, 444-470.
< , I. (https://doi.org/10.4239/wjd.v5.i4.444>
52. 2010) Lipid oxidation and cardiovascular disease: introduction to a review series. Circ. Res. 107, 1167-1169.
< , T. M., Hazen, S. L. (https://doi.org/10.1161/CIRCRESAHA.110.224618>
53. 2014) Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal. 20, 1126-1167.
< , M., Siddiqui, M. R., Tran, K., Reddy, S. P., Malik, A. B. (https://doi.org/10.1089/ars.2012.5149>
54. 2016) Effects of pomegranate seed oil on oxidative stress markers, serum biochemical parameters and pathological findings in kidney and heart of streptozotocin- induced diabetic rats. Ren. Fail. 38, 1256-66.
< , H., Sadeghnia, H. R., Hoseini, A., Farzadnia, M., Boroushaki, M. T. (https://doi.org/10.1080/0886022X.2016.1207053>
55. 2015) Extracellular signal-regulated kinases 1/2 as regulators of cardiac hypertrophy. Front. Pharmacol. 6, 149.
< , M., Kehat, I. (https://doi.org/10.3389/fphar.2015.00149>
56. Nakamoto, K. (2009) Infrared and Raman Spectra of Inorganic and Coordination Compounds, Applications in Coordination, Organometallic, and Bioinorganic Chemistry. John Wiley & Sons Inc. ISBN 978-0-470-40587-1.
57. 2007) Antidiabetic potential of Citrus sinensis and Punica granatum peel extracts in alloxan treated male mice. BioFactors 31, 17-24.
< , H. S., Kar, A. (https://doi.org/10.1002/biof.5520310102>
58. 2013) Hydrogen sulfide preconditions the db/db diabetic mouse heart against ischemia-reperfusion injury by activating NRF2 signaling in an ERK-dependent manner. Am. J. Physiol. Heart Circ. Physiol. 304, H1215-1224.
< , B. F., Nicholson, C. K., Lambert, J. P., Hood, R. L., Amin, H., Amin, S., Calvert, J. W. (https://doi.org/10.1152/ajpheart.00796.2012>
59. 2013) Role of vitamin D in the development of insulin resistance and type 2 diabetes. Curr. Diab. Rep. 13, 261-270.
< , S., Kienreich, K., Rutters, F., de Jongh, R., van Ballegooijen, A. J., Grübler, M., Tomaschitz, A., Dekker, J. M. (https://doi.org/10.1007/s11892-012-0358-4>
60. 2007) Review: The role of vitamin D and calcium in type 2 diabetes. A systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 92, 2017-2029.
< , A. G., Lau, J., Hu, F. B., Dawson-Hughes, B. (https://doi.org/10.1210/jc.2007-0298>
61. 2013) Comparative assay of antioxidant and antibacterial properties of Indian culinary seasonal fruit peel extracts obtained from Vellore, Tamilnadu. Int. J. Pharm. Sci. Rev. Res. 19, 131-135.
, A., Mathur, K., Vishwakarma, A., Suneetha, V., Mishra, B. (
62. 2007) Heart extracellular matrix gene expression profile in the vitamin D receptor knockout mice. J. Steroid Biochem. Mol. Biol. 103, 416-419.
< , A., Hershey, S., Ahmed, S., Nibbelink, K., Simpson, R. U. (https://doi.org/10.1016/j.jsbmb.2006.12.081>
63. 2010) Cannabidiol attenuates cardiac dysfunction, oxidative stress, fibrosis, and inflammatory and cell death signaling pathways in diabetic cardiomyopathy. J. Am. Coll. Cardiol. 56, 2115-2125.
< , M., Mukhopadhyay, P., Btkai, S., Patel, V., Saito, K., Matsumoto, S., Kashiwaya, Y., Horvth, B., Mukhopadhyay, B., Becker, L., Hask, G., Liaudet, L., Wink, D. A., Veves, A., Mechoulam, R., Pacher P. (https://doi.org/10.1016/j.jacc.2010.07.033>
64. 2012) Risk of stillbirth and infant death stratified by gestational age. Obstet. Gynecol. 206, 309.e1-7.
, M. G., Cheng, Y. W., Snowden, J. M., Nicholson, J. M., Caughey, A. B. (
65. 2010) Repercussions of mild diabetes on pregnancy in Wistar rats and on the fetal development. Diabetol. Metab. Syndr. 2010 2: 26.
< , F. H., Damasceno, D. C., Kempinas, W. G., Morceli, G., Sinzato, Y. K., Taylor, K. N., Rudge, M. V. (https://doi.org/10.1186/1758-5996-2-26>
66. 2015) Evaluation of antidiabetic, hypolipedimic and antioxidant activity of hydroalcoholic extract of leaves and fruit peel of Punica granatum in male Wistar albino rats. J. Nat. Sci. Biol. Med. 6, 56-62.
< , K. J., Sachdev, D. O., Bahurupi, Y., Kumarappan, M. (https://doi.org/10.4103/0976-9668.149085>
67. 2010) 14-3-3 protein protects against cardiac endoplasmic reticulum stress (ERS) and ERS-initiated apoptosis in experimental diabetes. J. Pharmacol. Sci. 113, 325-334.
< , F. R., Watanabe, K., Thandavarayan, R. A., Harima, M., Zhang, S., Muslin, A. J., Kodama, M., Aizawa, Y. (https://doi.org/10.1254/jphs.10047FP>
68. 2017) Assessment of diabetic cardiomyopathy by cardiovascular magnetic resonance T1 mapping: correlation with left-ventricular diastolic dysfunction and diabetic duration. J. Diabetes Res. 2017, 9584278.
< , Y., Zhang, X., Leng, W., Chen, L., Lei, X., Zhang, T., Greiser, A., Liang, Z., Wang, J. (https://doi.org/10.1155/2017/9584278>
69. 2007) Tumor necrosis factor-α mediates cardiac remodeling and ventricular dysfunction after pressure overload state. Circulation 115, 1398-1407.
< , M., Chen, M., Dawood, F., Zurawska, U., Li, J. Y., Parker, T., Kassiri, Z., Kirshenbaum, L. A., Arnold, M., Khokha, R., Liu, P. P. (https://doi.org/10.1161/CIRCULATIONAHA.106.643585>
70. 2015) Arachidonate 12/15-lipoxygenase-induced inflammation and oxidative stress are involved in the development of diabetic cardiomyopathy. Diabetes 64, 618-630.
< , H., Kayama, Y., Sakamoto, M., Iuchi, H., Shimizu, I, Yoshino, T., Kat, D., Nagoshi, T., Tojo, K., Minamino, T., Yoshimura, M., Utsunomiya, K. (https://doi.org/10.2337/db13-1896>
71. 2014) Targeted deletion of ERK2 in cardiomyocytes attenuates hypertrophic response but provokes pathological stress induced cardiac dysfunction. J. Mol. Cell Cardiol. 72, 104-116.
< , S., Liu, W., Zi, M., Tsui, H., Chowdhury, S. K., Endo, S., Satoh, Y., Prehar, S., Wang, R., Cartwright, E. J., Wang, X. (https://doi.org/10.1016/j.yjmcc.2014.03.002>
72. 2016) Diabetes propels the risk for cardiovascular disease: sweet monocytes becoming aggressive. Cell Mol. Life Sci. 73, 4675-4684.
< , J. A., Thiem, K., Stienstra, R., Riksen, N. P., Tack, C. J., Netea, M. G. (https://doi.org/10.1007/s00018-016-2316-9>
73. 2016) In vitro and in vivo inhibition of mTOR by 1,25-dihydroxyvitamin D3 to improve early diabetic nephropathy via the DDIT4/TSC2/mTOR pathway. Endocrine 54, 348-359.
< , H., Wang, J., Qu, H., Wei, H., Ji, B., Yang, Z., Wu, J., He, Q., Luo, Y., Liu, D., Duan, Y., Liu, F., Deng, H. (https://doi.org/10.1007/s12020-016-0999-1>
74. 2007) Mitogen-activated protein kinases in heart development and diseases. Circulation 116, 1413-1423.
< , Y. (https://doi.org/10.1161/CIRCULATIONAHA.106.679589>
75. 2009) Inactivation of GSK-3β by metallothionein prevents diabetes-related changes in cardiac energy metabolism, inflammation, nitrosative damage, and remodeling. Diabetes 58, 1391-1402.
< , Y., Feng, W., Xue, W., Tan, Y., Hein, D. W., Li, X. K., Cai, L. (https://doi.org/10.2337/db08-1697>
76. 2017) 1,25-Dihydroxyvitamin- D3 prevents the development of diabetic cardiomyopathy in type 1 diabetic rats by enhancing autophagy via inhibiting the β-catenin/TCF4/GSK-3β/mTOR pathway. J. Steroid Biochem. Mol. Biol. 168, 71-90.
< , H., Qu, H, Wang, H., Ji, B., Ding, Y., Liu, D., Duan, Y., Liang, H., Peng, C., Xiao, X., Deng, H. (https://doi.org/10.1016/j.jsbmb.2017.02.007>
77. 2011) Genoprotective effect of hyaluronic acid against benzalkonium chloride-induced DNA damage in human corneal epithelial cells. Mol. Vis. 17, 3364-3370.
, H., Zhang, H., Wang, C., Wu, Y., Xie, J., Jin, X., Yang, J., Ye, J. (
78. 1996) 1,25(OH)2 vitamin D3, and retinoic acid antagonize endothelin-stimulated hypertrophy of neonatal rat cardiac myocytes. J. Clin. Invest. 97, 1577-1588.
< , J., Garami, M., Cheng, T., Gardner, D.G. (https://doi.org/10.1172/JCI118582>
79. 2016) The role of ERK1/2 in the development of diabetic cardiomyopathy. Int. J. Mol. Sci. 17, pii: E2001.
< , Z., Sun, J., Tong, Q., Lin, Q., Qian, L., Park, Y., Zheng, Y. (https://doi.org/10.3390/ijms17122001>
80. 2017) Inhibition of HDAC3 prevents diabetic cardiomyopathy in OVE26 mice via epigenetic regulation of DUSP5-ERK1/2 pathway. Clin. Sci. 131, 1841-1857.
< , Z., Tong, Q., Zhang, Z. (https://doi.org/10.1042/CS20170064>
81. 2017) Transforming growth factor β (TGF-β) mediates cardiac fibrosis and induces diabetic cardiomyopathy. Diabetes Res. Clin. Pract. 133, 124-130.
< , Y., Meng, K., Pu, Y., Zhan, X. (https://doi.org/10.1016/j.diabres.2017.08.018>
82. 2017) Effects of 1,25-dihydroxyvitamin D3 on pathological changes in rats with diabetic cardiomyopathy. Lipids Health Dis. 16, 109.
< , X., Yu, X., Xiao, S., Yao, H., Zhu, J. (https://doi.org/10.1186/s12944-017-0498-2>
83. 2017) Maternal diabetes causes developmental delay and death in early-somite mouse embryos. Sci. Rep. 7, 11714.
< , J., Hakvoort, T. B. M, Ruijter, J. M., Jongejan, A., Koster, J., Swagemakers, S. M. A., Sokolovic, A., Lamers, W. H. (https://doi.org/10.1038/s41598-017-11696-x>