Fol. Biol. 2019, 65, 109-123
https://doi.org/10.14712/fb2019065030109
Reprogramming of Human Pancreatic Organoid Cells into Insulin-Producing β-Like Cells by Small Molecules and in Vitro Transcribed Modified mRNA Encoding Neurogenin 3 Transcription Factor
References
1. 2011) Inhibitors of Src and focal adhesion kinase promote endocrine specification: impact on the derivation of β-cells from human pluripotent stem cells. J. Biol. Chem. 286, 36042-52.
< , I., Yebra, M., Simpkinson, M., Xu, Y., Hayek, A., Montgomery, A. (https://doi.org/10.1074/jbc.M111.290825>
2. 2018) Pancreatic β-cell regeneration as a possible therapy for diabetes. Cell Metabolism 27, 57-67.
< , C., Bonner-Weir, S. (https://doi.org/10.1016/j.cmet.2017.08.007>
3. 2014) Characterization of polyhormonal insulin- producing cells derived in vitro from human embryonic stem cells. Stem Cell Res. 12, 194-208.
< , J. E., Suheda, E., Vela, J., Hu, X., Johnson, J. D., Kurata, H. T., Lynn, F. C., Piret, J. M., Asadi, A., Rezania, A., Kieffer, T. J. (https://doi.org/10.1016/j.scr.2013.10.003>
4. 2010) Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia. Nature 467, 318-22.
< , M., Payen, E., Negre, O., Wang, G., Hehir, K., Fusil, F., Down, J., Denaro, M., Brady, T., Westerman, K., Cavallesco, R., Gillet-Legrand, B., Caccavelli, L., Sgarra, R., Maouche-Chrétien, L., Bernaudin, F., Girot, R., Dorazio, R., Mulder, G. J., Polack, A., Bank, A., Soulier, J., Larghero, J., Kabbara, N., Dalle, B., Gourmel, B., Socie, G., Chrétien, S., Cartier, N., Aubourg, P., Fischer, A., Cornetta, K., Galacteros, F., Beuzard, Y., Gluckman, E., Bushman, F., Hacein-Bey-Abina, S., Leboulch, P. (https://doi.org/10.1038/nature09328>
5. 2011) A small molecule differentiation inducer increases insulin production by pancreatic β cells. Proc. Natl. Acad. Sci. USA 108, 20713-20718.
< , E.M., Osborne, J.K., Goetsch, S., Russell, J., Schneider, J.W., Cobb, M.H. (https://doi.org/10.1073/pnas.1118526109>
6. 2014) The organoid-initiating cells in mouse pancreas and liver are phenotypically and functionally similar. Stem Cell Res. 13, 275-283.
< , C., Tarlow, B., Wang, Y., Canaday, P. S., Haft, A., Schug, J., Streeter, P. R., Finegold, M. J., Shenje, L. T., Kaestner, K. H., Grompe, M. (https://doi.org/10.1016/j.scr.2014.07.006>
7. 2016) Intraislet pancreatic ducts can give rise to insulin-positive cells. Endocrinology 157, 166-175.
< , Y., Wiersch, J., Tulachan, S., Xiao, X., Guo, P., Rymer, C., Fischbach, S., Prasadan, K., Shiote, C., Gaffar, I., Song, Z., Galambos, C., Esni, F., Gittes, G. K. (https://doi.org/10.1210/en.2015-1175>
8. 2018) Modulation of the endocrine transcriptional program by targeting histone modifiers of the H3K27me3 mark. Biochim. Biophys. Acta Gene Regul. Mech. 1861, 473-480.
< , M., Cervantes, S., Miquel, E., Mora-Castilla, S., Laurent, L. C., Raya, A., Gomis, R., Gasa, R. (https://doi.org/10.1016/j.bbagrm.2018.03.003>
9. 2019) Diabetes relief in mice by glucose-sensing insulin-secreting human α-cells. Nature 567, 43-48.
< , K., Chera, S., Gurp, L. V., Oropeza, D., Ghila, L., Damond, N., Vethe, H., Paolo, J. A., Joosten, A. M., Berney, T., Bosco, D., Dorrell, C., Grompe, M., Reader, H., Roep, B. O., Thorel, F., Herrera, P. L. (https://doi.org/10.1038/s41586-019-0942-8>
10. 2017) Rapid differentiation of human pluripotent stem cells into functional neurons by mRNAs encoding transcription factors. Sci. Rep. 13, e42367.
< , S. K., Kohda, K., Ibata, K., Soma, A., Nakatake Y. (https://doi.org/10.1038/srep42367>
11. 2012) Pax6 is crucial for β-cell function, insulin biosynthesis, and glucose-induced insulin secretion. Mol. Endocrinol. 26, 696-709.
< , Y., Katz, L. S., Masson, M. H., Cheyssac, C., Poisson, C., Philippe, J. (https://doi.org/10.1210/me.2011-1256>
12. 2000) Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc. Natl. Acad. Sci. USA 97, 1607-1611.
< , G., Dierich, A., LeMeur, M., Guillemot, F. (https://doi.org/10.1073/pnas.97.4.1607>
13. 2003) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302, 415-419.
< , S., Kalle, C. V., Schmidt, M., McCormack, N. P., Leboulch, W. P., Lim, A., Osborne, C. S., Pawliuk, R., Morillon, E., Sorense, R., Forster, A., Fraser, P., Cohen, J. I., Basile, G. S., Alexander, I., Wintergerst, U., Frebourg, T., Aurias, A., Stoppa-Lyonnet, D., Romana, S., Radford-Weiss, I., Gross, F., Valensi, F., Delabesse E., Macintyre, E., Sigaux, F., Soulier, J., Leiva, L. E., Wissler, M., Prinz, C., Rabbitts, T. H., Deist, F. L., Fischer, A., Cavazzana-Calvo, M. (https://doi.org/10.1126/science.1088547>
14. 2015) In vivo reprogramming for tissue repair. Nat. Cell Biol. 17, 204-211.
< , C., Spagnoli, F. M., Berninger, B. (https://doi.org/10.1038/ncb3108>
15. 2014) Differentiated human stem cells resemble fetal, not adult, β-cells. Proc. Natl. Acad. Sci. USA 111, 3038-3043.
< , S., Donnell C. W. O., Deng, F., Millman, J. R., Walton, F., Diiorio, P., Rezania, A., Gifford, D. K., Melton, D. A. (https://doi.org/10.1073/pnas.1400709111>
16. 2013) Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/Rspondin axis. EMBO J. 32, 2708-2721.
< , M., Bonfanti, P., Boj, S. F., Sato, T., Loomans, C. J. M., Wetering, M. V. D., Sojoodi, M., Li, V. S. W., Schuijers, J., Gracanin, A., Ringnalda, F., Begthel, H., Hamer, K., Mulder, J., Es, J. H., Koning, E., Vries, R. G. J., Heimberg, H., Clevers, H. (https://doi.org/10.1038/emboj.2013.204>
17. 2013) Development of the human pancreas from foregut to endocrine commitment. Diabetes 62, 3514-3522.
< , R. E., Berry, A. A., Kirkwood-Wilson, R., Roberts, N. A., Hearn, T., Salisbury, R. J., Blaylock, J., Hanley, K. P., Hanley, N. A. (https://doi.org/10.2337/db12-1479>
18. 2016) Cells with surface expression of CD133 high CD71 low are enriched for tripotent colony-forming progenitor cells in the adult murine pancreas. Stem Cell Res. 16, 40-53.
< , L., Gao, D., Feng, T., Tremblay, J. R., Ghazalli, N., Luo, A., Rawson, J., Quijano, J. C., Chai, J., Wedeken, L., Hsu, J., LeBon, J., Walker, S., Shih, H., Mahdavi, A., Tirrell, A., Riggs, A. D., Ku, H. T. (https://doi.org/10.1016/j.scr.2015.11.015>
19. 2018) Single-factor SOX2 mediates direct neural reprogramming of human mesenchymal stem cells via transfection of in vitro transcribed mRNA. Cell Transplant. 27, 1154-1167.
< , B., Choi, S. W., Shin, J., Kim, J., Kang, I., Lee, B., Lee, J. Y., Kook, M. G. (https://doi.org/10.1177/0963689718771885>
20. 2008) Differentiation of CD133-positive pancreatic cells into insulin- producing islet-like cell clusters. Transplant. Proc. 40, 415-418.
< , T., Pektorova, L., Zacharovova, K., Berkova, Z., Girman, P., Dovolilova, E., Karasova, L., Saudek, F. (https://doi.org/10.1016/j.transproceed.2008.02.017>
21. 2016) Reprogramming of pancreatic exocrine cells AR42J into insulin-producing cells using mRNAs for Pdx1, Ngn3, and MafA transcription factors. Mol. Ther. Nucleic Acids 5, e2016.33.
< , T., Leontovyc, I., Loukotova, S., Kosinova, L., Saudek, F. (https://doi.org/10.1038/mtna.2016.33>
22. 2013) Expansion and conversion of human pancreatic ductal cells into insulin-secreting endocrine cells. Elife 19, e00940
< , J., Sugiyama, T., Liu, Y., Wang, J., Gu, X., Lei, J., Markmann, J. F., Miyazaki, S., Miyazaki, J., Szot, G. L., Bottino, R., Kim, S. K. (https://doi.org/10.7554/eLife.00940>
23. 2017) Synthetic mRNA is a more reliable tool for the delivery of DNA-targeting proteins into the cell nucleus than fusion with a protein transduction domain. PLoS One 12, e0182497.
< , I., Habart, D., Loukotova, S., Kosinova, L., Kriz, J., Saudek, F., Koblas, T. (https://doi.org/10.1371/journal.pone.0182497>
24. 2014) Longterm persistence and development of induced pancreatic β cells generated by lineage conversion of acinar cells. Nat. Biotechnol. 32, 1223-1230.
< , W., Cavelti-Weder, C., Zhang, Y., Clement, K., Donovan, S., Gonzalez, G., Zhu, J., Stemann, M., Xu, K., Hashimoto, T., Yamada, T., Nakanishi, M., Zhang, Y., Zeng, S., Gifford, D., Meisnner, A., Weir, G., Zhou, Q. (https://doi.org/10.1038/nbt.3082>
25. 2018) Expansion of adult human pancreatic tissue yields organoids harboring progenitor cells with endocrine differentiation potential. Stem Cell Reports 10, 712-724.
< , C. J. M., Giuliani, N. W., Balak, J., Ringnalda, F., Gurp, L., Huch, M., Boj, S. F., Sato, T., Kester, L., Lopes, S. M. C. S., Roots, M. S., Bonner-Weir, S., Engelse, M. A., Rabelink, T. J., Heimberg, H., Vries, R. G. J., Oudenaarden, A., Carlotti, F., Clevers, H., Koning, E. J. P. (https://doi.org/10.1016/j.stemcr.2018.02.005>
26. 2001) Mitochondrial function in normal and diabetic β-cells. Nature, 414, 807-812.
< , P., Wollheim, C. B. (https://doi.org/10.1038/414807a>
27. 2015) MafA is critical for maintenance of the mature β cell phenotype in mice. Diabetologia 58, 566-574.
< , W., Takahashi, S., Yasuda, K. (https://doi.org/10.1007/s00125-014-3464-9>
28. 2012) Maturation of human embryonic stem cell-derived pancreatic progenitors into functional islets capable of treating pre-existing diabetes in mice. Diabetes 61, 2016-2029.
< , A., Bruin, J. E., Riedel, M. J., Mojibian, M., Asadi, A., Xu, J., Gauvin, R., Narayan, K., Karanu, F., O’Neil, J. J., Ao, Z., Warnock, G. L., Kieffer, T. J. (https://doi.org/10.2337/db11-1711>
29. 2014) Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat. Biotechnol. 32, 1121-1134.
< , A., Bruin, J. E., Arora, P., Rubin, A., Batushansky, I., Asadi, A., Dwyer, S. O., Quiskamp, N., Mojibian, M., Albrecht, T., Yang, Y. H. C., Johnson, J. D., Kieffer, T. J. (https://doi.org/10.1038/nbt.3033>
30. 2014) Loss of Fbw7 reprograms adult pancreatic ductal cells into α, δ, and β cells. Cell Stem Cell 15, 139-353.
< , R., Gruber, R., Gu, G., Behrens, A. (https://doi.org/10.1016/j.stem.2014.06.019>
31. 2017) Clinical pancreatic islet transplantation. Nat. Rev. Endocrinol. 13, 268-277.
< , A. M. J., Pokrywczynska, M., Ricordi, C. (https://doi.org/10.1038/nrendo.2016.178>
32. 2014) Direct reprogramming of human fibroblasts to hepatocyte-like cells by synthetic modified mRNAs. PLoS One 9, e0100134.
< , K. P., Uppal, H. (https://doi.org/10.1371/journal.pone.0100134>
33. 2012) Plasticity of adult human pancreatic duct cells by neurogenin3-mediated reprogramming. PLoS One 7, e37055.
< N., Matens G. A., Bonné, S., Heremans, Y., Borup, R., Casteele, M. V., Ling, Z., Pipeles, D., Ravassad, P., Nielsen, F., Ferre, J., Heimberg, H. (https://doi.org/10.1371/journal.pone.0037055>
34. 2018) Neurog3 misexpression unravels mouse pancreatic ductal cell plasticity. PLoS One 13, e201536.
, A., Vergoni, B., Courtney, M., Gjernes, E., Hadzic, B., Avolio, F., Napolitano, T., Navarro, S., Mansouri, A., Collombat, P. (
35. 2010) Neurog3 gene dosage regulates allocation of endocrine and exocrine cell fates in the developing mouse pancreas. Dev. Biol. 339, 26-37.
< , S., Yan, J., Anderson, D. A., Xu, Y., Kanal, M. C., Cao, Z., Wright, C. V. E., Gu, G. (https://doi.org/10.1016/j.ydbio.2009.12.009>
36. 2018) Long-term correction of diabetes in mice by in vivo reprogramming of pancreatic ducts. Mol. Ther. 26, 1327-1342.
< , Y., Dorrell, C., Naugler, W. E., Heskett, M., Spellman, P., Li, B., Galivo, F., Haft A., Wakefield, L., Grompe, M. (https://doi.org/10.1016/j.ymthe.2018.02.014>
37. 2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7, 618-630.
< , L., Manos, P. D., Ahfeldt, T., Loh, Y., Li, H., Lau, F., Ebina, W. (https://doi.org/10.1016/j.stem.2010.08.012>
38. 2008) β cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell 132, 197-207.
< , X., D’Hoker, J., Stangé, S., Bonne, S., Leu, N. D., Xiao, X., Casteele, M. V. D., Mellitzer, G., Ling, Z., Pipeleers, D., Bouwens, L., Scharfmann, R., Gradwohl, G., Heimberg, H. (https://doi.org/10.1016/j.cell.2007.12.015>