Fol. Biol. 2019, 65, 181-187

https://doi.org/10.14712/fb2019065040181

Stable COX17 Downregulation Leads to Alterations in Mitochondrial Ultrastructure, Decreased Copper Content and Impaired Cytochrome c Oxidase Biogenesis in HEK293 Cells

M. Vanišová, D. Burská, J. Křížová, T. Daňhelovská, Ž. Dosoudilová, J. Zeman, L. Stibůrek, Hana Hansíková

Laboratory for Study of Mitochondrial Disorders, Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic

Received March 2019
Accepted June 2019

References

1. Baker, Z. N., Cobine, P. A., Leary, S. C. (2017) The mitochondrion: a central architect of copper homeostasis. Metallomics 9, 1501-1512. <https://doi.org/10.1039/C7MT00221A>
2. Balsa, E., Marco, R., Perales-Clemente, E., Szklarczyk, R., Calvo, E., Landazuri, M. O., Enriquez, J. A. (2012) NDUFA4 is a subunit of complex IV of the mammalian electron transport chain. Cell Metab. 16, 378-386. <https://doi.org/10.1016/j.cmet.2012.07.015>
3. Barrientos, A., Barros, M. H., Valnot, I., Rotig, A., Rustin, P., Tzagoloff, A. (2002) Cytochrome oxidase in health and disease. Gene 286, 53-63. <https://doi.org/10.1016/S0378-1119(01)00803-4>
4. Beauvoit, B., Bunoust, O., Guerin, B., Rigoulet, M. (1999) ATP-regulation of cytochrome oxidase in yeast mitochondria: role of subunit VIa. Eur. J. Biochem. 263, 118-127. <https://doi.org/10.1046/j.1432-1327.1999.00475.x>
5. Boulet, A., Vest, K. E., Maynard, M. K., Gammon, M. G., Russell, A. C., Mathews, A. T., Cole, S. E., Zhu, X., Phillips, C. B., Kwong, J. Q., Dodani, S. C., Leary, S. C., Cobine, P. A. (2018) The mammalian phosphate carrier SLC25A3 is a mitochondrial copper transporter required for cytochrome c oxidase biogenesis. J. Biol. Chem. 293, 1887-1896. <https://doi.org/10.1074/jbc.RA117.000265>
6. Brantova, O., Tesarova, M., Hansikova, H., Elleder, M., Zeman, J., Sladkova, J. (2006) Ultrastructural changes of mitochondria in the cultivated skin fibroblasts of patients with point mutations in mitochondrial DNA. Ultrastruct. Pathol. 30, 239-245. <https://doi.org/10.1080/01913120600820112>
7. Bravo-Sagua, R., Parra, V., Lopez-Crisosto, C., Diaz, P., Quest, A. F., Lavandero, S. (2017) Calcium transport and signaling in mitochondria. Compr. Physiol. 7, 623-634. <https://doi.org/10.1002/cphy.c160013>
8. Carr, H. S., Winge, D. R. (2003) Assembly of cytochrome c oxidase within the mitochondrion. Acc. Chem. Res 36, 309-316. <https://doi.org/10.1021/ar0200807>
9. Cesnekova, J., Rodinova, M., Hansikova, H., Houstek, J., Zeman, J., Stiburek, L. (2016) The mammalian homologue of yeast Afg1 ATPase (lactation elevated 1) mediates degradation of nuclear-encoded complex IV subunits. Biochem. J. 473, 797-804. <https://doi.org/10.1042/BJ20151029>
10. Cobine, P. A., Ojeda, L. D., Rigby, K. M., Winge, D. R. (2004) Yeast contain a non-proteinaceous pool of copper in the mitochondrial matrix. J. Biol. Chem. 279, 14447-14455. <https://doi.org/10.1074/jbc.M312693200>
11. Dodani, S. C., Leary, S. C., Cobine, P. A., Winge, D. R., Chang, C. J. (2011) A targetable fluorescent sensor reveals that copper-deficient SCO1 and SCO2 patient cells prioritize mitochondrial copper homeostasis. J. Am. Chem. Soc. 133, 8606-8616. <https://doi.org/10.1021/ja2004158>
12. Ducker, G. S., Rabinowitz, J. D. (2017) One-carbon metabolism in health and disease. Cell Metab. 25, 27-42. <https://doi.org/10.1016/j.cmet.2016.08.009>
13. Glerum, D. M., Shtanko, A., Tzagoloff, A. (1996) Characterization of COX17, a yeast gene involved in copper metabolism and assembly of cytochrome oxidase. J. Biol. Chem. 271, 14504-14509. <https://doi.org/10.1074/jbc.271.24.14504>
14. Hannappel, A., Bundschuh, F. A., Ludwig, B. (2012) Role of Surf1 in heme recruitment for bacterial COX biogenesis. Biochim. Biophys. Acta 1817, 928-937. <https://doi.org/10.1016/j.bbabio.2011.09.007>
15. Chan, C. Y., Pedley, A. M., Kim, D., Xia, C., Zhuang, X., Benkovic, S. J. (2018) Microtubule-directed transport of purine metabolons drives their cytosolic transit to mitochondria. Proc. Natl. Acad. Sci. USA 115, 13009-13014. <https://doi.org/10.1073/pnas.1814042115>
16. Chojnacka, M., Gornicka, A., Oeljeklaus, S., Warscheid, B., Chacinska, A. (2015) Cox17 protein is an auxiliary factor involved in the control of the mitochondrial contact site and cristae organizing system. J. Biol. Chem. 290, 15304-15312. <https://doi.org/10.1074/jbc.M115.645069>
17. Jett, K. A., Leary, S. C. (2018) Building the CuA site of cytochrome c oxidase: A complicated, redox-dependent process driven by a surprisingly large complement of accessory proteins. J. Biol. Chem. 293, 4644-4652. <https://doi.org/10.1074/jbc.R117.816132>
18. Kadenbach, B., Jarausch, J., Hartmann, R., Merle, P. (1983) Separation of mammalian cytochrome c oxidase into 13 polypeptides by a sodium dodecyl sulfate-gel electrophoretic procedure. Anal. Biochem. 129, 517-521. <https://doi.org/10.1016/0003-2697(83)90586-9>
19. Kadenbach, B. (2017) Regulation of mammalian 13-subunit cytochrome c oxidase and binding of other proteins: role of NDUFA4. Trends Endocrinol. Metab. 28, 761-770. <https://doi.org/10.1016/j.tem.2017.09.003>
20. Leary, S. C. (2010) Redox regulation of SCO protein function: controlling copper at a mitochondrial crossroad. Antioxid. Redox Signal. 13, 1403-1416. <https://doi.org/10.1089/ars.2010.3116>
21. Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J. (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265-275. <https://doi.org/10.1016/S0021-9258(19)52451-6>
22. Maxfield, A. B., Heaton, D. N., Winge, D. R. (2004) Cox17 is functional when tethered to the mitochondrial inner membrane. J. Biol. Chem. 279, 5072-5080. <https://doi.org/10.1074/jbc.M311772200>
23. Mesecke, N., Terziyska, N., Kozany, C., Baumann, F., Neupert, W., Hell, K., Herrmann, J. M. (2005) A disulfide relay system in the intermembrane space of mitochondria that mediates protein import. Cell 121, 1059-1069. <https://doi.org/10.1016/j.cell.2005.04.011>
24. Oswald, C., Krause-Buchholz, U., Rodel, G. (2009) Knockdown of human COX17 affects assembly and supramolecular organization of cytochrome c oxidase. J. Mol. Biol. 389, 470-479. <https://doi.org/10.1016/j.jmb.2009.04.034>
25. Pacheu-Grau, D., Bareth, B., Dudek, J., Juris, L., Vogtle, F. N., Wissel, M., Leary, S. C., Dennerlein, S., Rehling, P., Deckers, M. (2015) Cooperation between COA6 and SCO2 in COX2 maturation during cytochrome c oxidase assembly links two mitochondrial cardiomyopathies. Cell Metab. 21, 823-833. <https://doi.org/10.1016/j.cmet.2015.04.012>
26. Palumaa, P., Kangur, L., Voronova, A., Sillard, R. (2004) Metal- binding mechanism of Cox17, a copper chaperone for cytochrome c oxidase. Biochem J. 382, 307-314. <https://doi.org/10.1042/BJ20040360>
27. Pitceathly, R. D., Rahman, S., Wedatilake, Y., Polke, J. M., Cirak, S., Foley, A. R., Sailer, A., Hurles, M. E., Stalker, J., Hargreaves, I., Woodward, C. E., Sweeney, M. G., Muntoni, F., Houlden, H., Taanman, J. W., Hanna, M. G., Consortium, U. K. (2013) NDUFA4 mutations underlie dysfunction of a cytochrome c oxidase subunit linked to human neurological disease. Cell Rep. 3, 1795-1805. <https://doi.org/10.1016/j.celrep.2013.05.005>
28. Pitceathly, R. D. S., Taanman, J. W. (2018) NDUFA4 (Renamed COXFA4) is a cytochrome-c oxidase subunit. Trends Endocrinol. Metab. 29, 452-454. <https://doi.org/10.1016/j.tem.2018.03.009>
29. Quadalti, C., Brunetti, D., Lagutina, I., Duchi, R., Perota, A., Lazzari, G., Cerutti, R., Di Meo, I., Johnson, M., Bottani, E., Crociara, P., Corona, C., Grifoni, S., Tiranti, V., Fernandez- Vizarra, E., Robinson, A. J., Viscomi, C., Casalone, C., Zeviani, M., Galli, C. (2018) SURF1 knockout cloned pigs: Early onset of a severe lethal phenotype. Biochim. Biophys. Acta Mol. Basis Dis. 1864, 2131-2142. <https://doi.org/10.1016/j.bbadis.2018.03.021>
30. Schagger, H., von Jagow, G. (1991) Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal. Biochem. 199, 223-231. <https://doi.org/10.1016/0003-2697(91)90094-A>
31. Stiburek, L., Vesela, K., Hansikova, H., Pecina, P., Tesarova, M., Cerna, L., Houstek, J., Zeman, J. (2005) Tissue-specific cytochrome c oxidase assembly defects due to mutations in SCO2 and SURF1. Biochem. J. 392, 625-632. <https://doi.org/10.1042/BJ20050807>
32. Stiburek, L., Hansikova, H., Tesarova, M., Cerna, L., Zeman, J. (2006) Biogenesis of eukaryotic cytochrome c oxidase. Physiol. Res. 55(Suppl 2), S27-S41. <https://doi.org/10.33549/physiolres.930000.55.S2.27>
33. Stiburek, L., Vesela, K., Hansikova, H., Hulkova, H., Zeman, J. (2009) Loss of function of Sco1 and its interaction with cytochrome c oxidase. Am. J. Physiol. Cell. Physiol. 296, C1218-1226. <https://doi.org/10.1152/ajpcell.00564.2008>
34. Takahashi, Y., Kako, K., Kashiwabara, S., Takehara, A., Inada, Y., Arai, H., Nakada, K., Kodama, H., Hayashi, J., Baba, T., Munekata, E. (2002) Mammalian copper chaperone Cox17p has an essential role in activation of cytochrome c oxidase and embryonic development. Mol. Cell Biol. 22, 7614-7621. <https://doi.org/10.1128/MCB.22.21.7614-7621.2002>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Archive