Fol. Biol. 2019, 65, 181-187
https://doi.org/10.14712/fb2019065040181
Stable COX17 Downregulation Leads to Alterations in Mitochondrial Ultrastructure, Decreased Copper Content and Impaired Cytochrome c Oxidase Biogenesis in HEK293 Cells
References
1. 2017) The mitochondrion: a central architect of copper homeostasis. Metallomics 9, 1501-1512.
< , Z. N., Cobine, P. A., Leary, S. C. (https://doi.org/10.1039/C7MT00221A>
2. 2012) NDUFA4 is a subunit of complex IV of the mammalian electron transport chain. Cell Metab. 16, 378-386.
< , E., Marco, R., Perales-Clemente, E., Szklarczyk, R., Calvo, E., Landazuri, M. O., Enriquez, J. A. (https://doi.org/10.1016/j.cmet.2012.07.015>
3. 2002) Cytochrome oxidase in health and disease. Gene 286, 53-63.
< , A., Barros, M. H., Valnot, I., Rotig, A., Rustin, P., Tzagoloff, A. (https://doi.org/10.1016/S0378-1119(01)00803-4>
4. 1999) ATP-regulation of cytochrome oxidase in yeast mitochondria: role of subunit VIa. Eur. J. Biochem. 263, 118-127.
< , B., Bunoust, O., Guerin, B., Rigoulet, M. (https://doi.org/10.1046/j.1432-1327.1999.00475.x>
5. 2018) The mammalian phosphate carrier SLC25A3 is a mitochondrial copper transporter required for cytochrome c oxidase biogenesis. J. Biol. Chem. 293, 1887-1896.
< , A., Vest, K. E., Maynard, M. K., Gammon, M. G., Russell, A. C., Mathews, A. T., Cole, S. E., Zhu, X., Phillips, C. B., Kwong, J. Q., Dodani, S. C., Leary, S. C., Cobine, P. A. (https://doi.org/10.1074/jbc.RA117.000265>
6. 2006) Ultrastructural changes of mitochondria in the cultivated skin fibroblasts of patients with point mutations in mitochondrial DNA. Ultrastruct. Pathol. 30, 239-245.
< , O., Tesarova, M., Hansikova, H., Elleder, M., Zeman, J., Sladkova, J. (https://doi.org/10.1080/01913120600820112>
7. 2017) Calcium transport and signaling in mitochondria. Compr. Physiol. 7, 623-634.
< , R., Parra, V., Lopez-Crisosto, C., Diaz, P., Quest, A. F., Lavandero, S. (https://doi.org/10.1002/cphy.c160013>
8. 2003) Assembly of cytochrome c oxidase within the mitochondrion. Acc. Chem. Res 36, 309-316.
< , H. S., Winge, D. R. (https://doi.org/10.1021/ar0200807>
9. 2016) The mammalian homologue of yeast Afg1 ATPase (lactation elevated 1) mediates degradation of nuclear-encoded complex IV subunits. Biochem. J. 473, 797-804.
< , J., Rodinova, M., Hansikova, H., Houstek, J., Zeman, J., Stiburek, L. (https://doi.org/10.1042/BJ20151029>
10. 2004) Yeast contain a non-proteinaceous pool of copper in the mitochondrial matrix. J. Biol. Chem. 279, 14447-14455.
< , P. A., Ojeda, L. D., Rigby, K. M., Winge, D. R. (https://doi.org/10.1074/jbc.M312693200>
11. 2011) A targetable fluorescent sensor reveals that copper-deficient SCO1 and SCO2 patient cells prioritize mitochondrial copper homeostasis. J. Am. Chem. Soc. 133, 8606-8616.
< , S. C., Leary, S. C., Cobine, P. A., Winge, D. R., Chang, C. J. (https://doi.org/10.1021/ja2004158>
12. 2017) One-carbon metabolism in health and disease. Cell Metab. 25, 27-42.
< , G. S., Rabinowitz, J. D. (https://doi.org/10.1016/j.cmet.2016.08.009>
13. 1996) Characterization of COX17, a yeast gene involved in copper metabolism and assembly of cytochrome oxidase. J. Biol. Chem. 271, 14504-14509.
< , D. M., Shtanko, A., Tzagoloff, A. (https://doi.org/10.1074/jbc.271.24.14504>
14. 2012) Role of Surf1 in heme recruitment for bacterial COX biogenesis. Biochim. Biophys. Acta 1817, 928-937.
< , A., Bundschuh, F. A., Ludwig, B. (https://doi.org/10.1016/j.bbabio.2011.09.007>
15. 2018) Microtubule-directed transport of purine metabolons drives their cytosolic transit to mitochondria. Proc. Natl. Acad. Sci. USA 115, 13009-13014.
< , C. Y., Pedley, A. M., Kim, D., Xia, C., Zhuang, X., Benkovic, S. J. (https://doi.org/10.1073/pnas.1814042115>
16. 2015) Cox17 protein is an auxiliary factor involved in the control of the mitochondrial contact site and cristae organizing system. J. Biol. Chem. 290, 15304-15312.
< , M., Gornicka, A., Oeljeklaus, S., Warscheid, B., Chacinska, A. (https://doi.org/10.1074/jbc.M115.645069>
17. 2018) Building the CuA site of cytochrome c oxidase: A complicated, redox-dependent process driven by a surprisingly large complement of accessory proteins. J. Biol. Chem. 293, 4644-4652.
< , K. A., Leary, S. C. (https://doi.org/10.1074/jbc.R117.816132>
18. 1983) Separation of mammalian cytochrome c oxidase into 13 polypeptides by a sodium dodecyl sulfate-gel electrophoretic procedure. Anal. Biochem. 129, 517-521.
< , B., Jarausch, J., Hartmann, R., Merle, P. (https://doi.org/10.1016/0003-2697(83)90586-9>
19. 2017) Regulation of mammalian 13-subunit cytochrome c oxidase and binding of other proteins: role of NDUFA4. Trends Endocrinol. Metab. 28, 761-770.
< , B. (https://doi.org/10.1016/j.tem.2017.09.003>
20. 2010) Redox regulation of SCO protein function: controlling copper at a mitochondrial crossroad. Antioxid. Redox Signal. 13, 1403-1416.
< , S. C. (https://doi.org/10.1089/ars.2010.3116>
21. 1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265-275.
< , O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J. (https://doi.org/10.1016/S0021-9258(19)52451-6>
22. 2004) Cox17 is functional when tethered to the mitochondrial inner membrane. J. Biol. Chem. 279, 5072-5080.
< , A. B., Heaton, D. N., Winge, D. R. (https://doi.org/10.1074/jbc.M311772200>
23. 2005) A disulfide relay system in the intermembrane space of mitochondria that mediates protein import. Cell 121, 1059-1069.
< , N., Terziyska, N., Kozany, C., Baumann, F., Neupert, W., Hell, K., Herrmann, J. M. (https://doi.org/10.1016/j.cell.2005.04.011>
24. 2009) Knockdown of human COX17 affects assembly and supramolecular organization of cytochrome c oxidase. J. Mol. Biol. 389, 470-479.
< , C., Krause-Buchholz, U., Rodel, G. (https://doi.org/10.1016/j.jmb.2009.04.034>
25. 2015) Cooperation between COA6 and SCO2 in COX2 maturation during cytochrome c oxidase assembly links two mitochondrial cardiomyopathies. Cell Metab. 21, 823-833.
< , D., Bareth, B., Dudek, J., Juris, L., Vogtle, F. N., Wissel, M., Leary, S. C., Dennerlein, S., Rehling, P., Deckers, M. (https://doi.org/10.1016/j.cmet.2015.04.012>
26. 2004) Metal- binding mechanism of Cox17, a copper chaperone for cytochrome c oxidase. Biochem J. 382, 307-314.
< , P., Kangur, L., Voronova, A., Sillard, R. (https://doi.org/10.1042/BJ20040360>
27. 2013) NDUFA4 mutations underlie dysfunction of a cytochrome c oxidase subunit linked to human neurological disease. Cell Rep. 3, 1795-1805.
< , R. D., Rahman, S., Wedatilake, Y., Polke, J. M., Cirak, S., Foley, A. R., Sailer, A., Hurles, M. E., Stalker, J., Hargreaves, I., Woodward, C. E., Sweeney, M. G., Muntoni, F., Houlden, H., Taanman, J. W., Hanna, M. G., Consortium, U. K. (https://doi.org/10.1016/j.celrep.2013.05.005>
28. 2018) NDUFA4 (Renamed COXFA4) is a cytochrome-c oxidase subunit. Trends Endocrinol. Metab. 29, 452-454.
< , R. D. S., Taanman, J. W. (https://doi.org/10.1016/j.tem.2018.03.009>
29. 2018) SURF1 knockout cloned pigs: Early onset of a severe lethal phenotype. Biochim. Biophys. Acta Mol. Basis Dis. 1864, 2131-2142.
< , C., Brunetti, D., Lagutina, I., Duchi, R., Perota, A., Lazzari, G., Cerutti, R., Di Meo, I., Johnson, M., Bottani, E., Crociara, P., Corona, C., Grifoni, S., Tiranti, V., Fernandez- Vizarra, E., Robinson, A. J., Viscomi, C., Casalone, C., Zeviani, M., Galli, C. (https://doi.org/10.1016/j.bbadis.2018.03.021>
30. 1991) Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal. Biochem. 199, 223-231.
< , H., von Jagow, G. (https://doi.org/10.1016/0003-2697(91)90094-A>
31. 2005) Tissue-specific cytochrome c oxidase assembly defects due to mutations in SCO2 and SURF1. Biochem. J. 392, 625-632.
< , L., Vesela, K., Hansikova, H., Pecina, P., Tesarova, M., Cerna, L., Houstek, J., Zeman, J. (https://doi.org/10.1042/BJ20050807>
32. 2006) Biogenesis of eukaryotic cytochrome c oxidase. Physiol. Res. 55(Suppl 2), S27-S41.
< , L., Hansikova, H., Tesarova, M., Cerna, L., Zeman, J. (https://doi.org/10.33549/physiolres.930000.55.S2.27>
33. 2009) Loss of function of Sco1 and its interaction with cytochrome c oxidase. Am. J. Physiol. Cell. Physiol. 296, C1218-1226.
< , L., Vesela, K., Hansikova, H., Hulkova, H., Zeman, J. (https://doi.org/10.1152/ajpcell.00564.2008>
34. 2002) Mammalian copper chaperone Cox17p has an essential role in activation of cytochrome c oxidase and embryonic development. Mol. Cell Biol. 22, 7614-7621.
< , Y., Kako, K., Kashiwabara, S., Takehara, A., Inada, Y., Arai, H., Nakada, K., Kodama, H., Hayashi, J., Baba, T., Munekata, E. (https://doi.org/10.1128/MCB.22.21.7614-7621.2002>