Fol. Biol. 2019, 65, 195-202

https://doi.org/10.14712/fb2019065040195

Study of Aberrant Modifications in Peptides as a Test Bench to Investigate the Immunological Response to Non-Enzymatic Glycation

F. Nuti1, A. Gallo2, F. Real-Fernandez1, C. Rentier1,3, G. Rossi4,5, F. Piarulli2, P. Traldi6, S. Carganico1,5, P. Rovero4, Annunziata Lapolla2, Anna Maria Papini1,3

1Laboratory of Peptide and Protein Chemistry and Biology, Department of Chemistry „Ugo Schiff“, University of Florence, Sesto Fiorentino, Italy
2Diabetology and Dietetics, Department of Medicine (DIMED), University of Padova, Padova, Italy
3PeptLab@UCP Platform and Laboratory of Chemical Biology EA4505, University Paris-Seine, Cergy-Pontoise CEDEX, France
4Laboratory of Peptide and Protein Chemistry and Biology, Department of NeuroFarBa, University of Florence, Sesto Fiorentino, Italy
5Pharma Quality Europe PQE SrL, Località Prulli, Firenze, Italy
6Istituto di Ricerca Pediatrica, Città della Speranza, Padova, Italy

Received May 2019
Accepted June 2019

References

1. Ahmed, N., Thornalley, P. J. (2007) Advanced glycation endproducts: what is their relevance to diabetic complications? Diabetes Obes. Metab. 9, 233-245. <https://doi.org/10.1111/j.1463-1326.2006.00595.x>
2. Brownlee, M., Vlassara, H., Cerami, A. (1984) Nonenzymatic glycosylation and the pathogenesis of diabetic complications. Ann. Intern. Med. 101, 527-537. <https://doi.org/10.7326/0003-4819-101-4-527>
3. Carganico, S., Rovero, P., Halperin, J. A., Papini, A. M., Chorev, M. (2009) Building blocks for the synthesis of posttranslationally modified glycated peptides and proteins. J. Pept. Sci. 15, 67-71. <https://doi.org/10.1002/psc.1105>
4. Carotenuto, A., D’Ursi, A. M., Mulinacci, B., Paolini, I., Lolli, F., Papini, A. M., Novellino, E., Rovero, P. (2006) Conformation- activity relationship of designed glycopeptides as synthetic probes for the detection of autoantibodies, biomarkers of multiple sclerosis. J. Med. Chem. 49, 5072-5079. <https://doi.org/10.1021/jm060117j>
5. Carotenuto, A., Alcaro, M. C., Saviello, M. R., Peroni, E., Nuti, F., Papini, A. M., Novellino, E., Rovero, P. (2008) Designed glycopeptides with different β-turn types as synthetic probes for the detection of autoantibodies as biomarkers of multiple sclerosis. J. Med. Chem. 51, 5304-5309. <https://doi.org/10.1021/jm800391y>
6. Lapolla, A., Fedele, D., Aronica, R., Garbeglio, M., D’Alpaos, M., Seraglia, R., Traldi, P. (1997) Evaluation of IgG glycation levels by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun. Mass Spectrom. 11, 1342-1346. <https://doi.org/10.1002/(SICI)1097-0231(199708)11:12<1342::AID-RCM972>3.0.CO;2-T>
7. Lapolla, A., Fedele, D., Garbeglio, M., Martano, L., Tonani, R., Seraglia, R., Favretto, D., Fedrigo, M. A., Traldi, P. (2000). Matrix-assisted laser desorption/ionization mass spectrometry, enzymatic digestion, and molecular modeling in the study of nonenzymatic glycation of IgG. J. Am. Soc. Mass Spectrom. 11, 153-159. <https://doi.org/10.1016/S1044-0305(99)00134-8>
8. Lapolla, A., Traldi, P., Fedele, D. (2005) Importance of measuring products of non-enzymatic glycation of proteins. Clin. Biochem. 38, 103-115. <https://doi.org/10.1016/j.clinbiochem.2004.09.007>
9. Lapolla, A., Fedele, D., Seraglia, R., Traldi, P. (2006) The role of mass spectrometry in the study of non-enzymatic protein glycation in diabetes: an update. Mass Spectrom. Rev. 25, 775-797. <https://doi.org/10.1002/mas.20090>
10. Lapolla, A., Porcu, S., Traldi, P. (2011) Some views on proteomics in diabetes. Clin. Chem. Lab. Med. 49, 943-957. <https://doi.org/10.1515/CCLM.2011.151>
11. Lapolla, A., Molin, L., Traldi, P. (2013) Protein glycation in diabetes as determined by mass spectrometry. Int. J. Endocrinol. 2013, 412103. <https://doi.org/10.1155/2013/412103>
12. Lolli, F., Mazzanti, B., Pazzagli, M., Peroni, E., Alcaro, M. C., Sabatino, G., Lanzillo, R., Brescia Morra, V., Santoro, L., Gasperini, C., Galgani, S., D’Elios, M. M., Zipoli, V., Sotgiu, S., Pugliatti, M., Rovero, P., Chelli, M., Papini, A. M. (2005a). The glycopeptide CSF114(Glc) detects serum antibodies in multiple sclerosis. J. Neuroimmunol. 167, 131-137. <https://doi.org/10.1016/j.jneuroim.2005.05.016>
13. Lolli. F., Mulinacci, B., Carotenuto, A., Bonetti, B., Sabatino, G., Mazzanti, B., D’Ursi, A., Novellino, E., Pazzagli, M., Lovato, L., Alcaro, M., Peroni, E., Pozo-Carrero, M., Nuti, F., Battistini, L., Borsellino, G., Chelli, M., Rovero, P., Papini, A. (2005b) An N-glucosylated peptide detecting disease-specific autoantibodies, biomarkers of multiple sclerosis. Proc. Natl. Acad. Sci. USA 102, 10273-10278. <https://doi.org/10.1073/pnas.0503178102>
14. Lopes-Virella, M. F., Binzafar, N., Rackley, S., Takei, A., La Via, M., Virella, G. (1997) The uptake of LDL-IC by human macrophages: predominant involvement of the FcγRI receptor. Atherosclerosis 135, 161-170. <https://doi.org/10.1016/S0021-9150(97)00157-3>
15. Lopes-Virella, M. F., McHenry, M. B., Lipsitz, S., Yim, E., Wilson, P. F., Lackland, D. T., Lyons, T., Jenkins, A. J., Virella, G., Group DER (2007) Immune complexes containing modified lipoproteins are related to the progression of internal carotid intima-media thickness in patients with type 1 diabetes. Atherosclerosis 190, 359-369. <https://doi.org/10.1016/j.atherosclerosis.2006.02.007>
16. Maillard, L. C. (1912) Action des acides amines sur les sucres: formation des melanoides par voie methodique. C. R. Hebd. Seances Acad. Sci. 154, 66-68. (in French)
17. McMillin, J. M. (1990) Clinical methods: the history, physical, and laboratory examinations. In: Blood Glucose, 3rd edition, eds. Walker, H. K., Hall, W. D., Hurst, J. W., Chapter 141, pp. 662-665. Butterworths, Boston.
18. Mosca, A., Lapolla, A., Gillery, P. (2013) Glycemic control in the clinical management of diabetic patients. Clin. Chem. Lab. Med. 51, 753-766. <https://doi.org/10.1515/cclm-2012-0594>
19. Nuti, F., Peroni, E., Real-Fernández, F., Bonache, M. A., Le Chevalier-Isaad, A., Chelli, M., Lubin-Germain, N., Uziel, J., Rovero, P., Lolli, F., Papini, A. M. (2010) Posttranslationally modified peptides efficiently mimicking neoantigens: a challenge for theragnostics of autoimmune diseases. Biopolymers 94, 791-799. <https://doi.org/10.1002/bip.21456>
20. Nuti, F., Gallo, A., Real-Fernandez, F., Crulli, M., Rentier, C., Piarulli, F., Peroni, E., Rossi, G., Traldi, P., Rovero, P., Lapolla, A., Papini, A. M. (2018) Antibodies to post-translationally modified mitochondrial peptide PDC-E2(167-184) in type 1 diabetes. Arch. Biochem. Biophys. 659, 66-74. <https://doi.org/10.1016/j.abb.2018.09.021>
21. Pacini, G., Carotenuto, A., Rentier, C., Nuti, F., Real-Fernandez, F., Brancaccio, D., Sabatino, G., Larregola, M., Peroni, E., Migliorini, P., Novellino, E., Battezzati, P. M., Selmi, C., Papini, A. M., Rovero, P. (2015) Role of lipoylation of the immunodominant epitope of pyruvate dehydrogenase complex: toward a peptide-based diagnostic assay for primary biliary cirrhosis. J. Med. Chem. 58, 6619-6629. <https://doi.org/10.1021/acs.jmedchem.5b00783>
22. Reche, P., Perham, R. N. (1999) Structure and selectivity in post-translational modification: attaching the biotinyl-lysine and lipoyl-lysine swinging arms in multifunctional enzymes. EMBO J. 18, 2673-2682. <https://doi.org/10.1093/emboj/18.10.2673>
23. Szymanski, C. M., Wren, B. W. (2005) Protein glycosylation in bacterial mucosal pathogens. Nat. Rev. Microbiol. 3, 225-237. <https://doi.org/10.1038/nrmicro1100>
24. Thornalley, P. J. (2005) Dicarbonyl intermediates in the Maillard reaction. Ann. N. Y. Acad. Sci. 1043, 111-117. <https://doi.org/10.1196/annals.1333.014>
25. Turk, Z., Ljubic, S., Turk, N., Benko, B. (2001) Detection of autoantibodies against advanced glycation endproducts and AGE-immune complexes in serum of patients with diabetes mellitus. Clin. Chim. Acta. 303, 105-115. <https://doi.org/10.1016/S0009-8981(00)00389-2>
26. Ulrich, P., Cerami, A. (2001) Protein glycation, diabetes, and aging. Recent Prog. Horm. Res. 56, 1-21. <https://doi.org/10.1210/rp.56.1.1>
27. Van de Water, J., Gershwin, M. E., Leung, P., Ansari, A., Coppel, R. L. (1988) The autoepitope of the 74-kD mitochondrial autoantigen of primary biliary cirrhosis corresponds to the functional site of dihydrolipoamide acetyltransferase. J. Exp. Med. 167, 1791-1799. <https://doi.org/10.1084/jem.167.6.1791>
28. Vay, D., Vidali, M., Allochis, G., Cusaro, C., Rolla, R., Mottaran, E., Bellomo, G., Albano, E. (2000) Antibodies against advanced glycation end product Nε-(carboxymethyl)lysine in healthy controls and diabetic patients. Diabetologia 43, 1385-1388. <https://doi.org/10.1007/s001250051543>
29. Virella, G., Derrick, M. B., Pate, V., Chassereau, C., Thorpe, S. R., Lopes-Virella, M. F. (2005) Development of capture assays for different modifications of human low-density lipoprotein. Clin. Diagn. Lab. Immunol. 12, 68-75.
30. Virella, G., Carter, R. E., Saad, A., Crosswell, E. G., Game, B. A., Lopes-Virella, M. F. (2008) Distribution of IgM and IgG antibodies to oxidized LDL in immune complexes isolated from patients with type 1 diabetes and its relationship with nephropathy. Clin. Immunol. 127, 394-400. <https://doi.org/10.1016/j.clim.2008.02.005>
31. Vlassara, H., Uribarri, J. (2014) Advanced glycation end products (AGE) and diabetes: cause, effect, or both? Curr. Diab. Rep. 14, 453. <https://doi.org/10.1007/s11892-013-0453-1>
32. Wallis, N. G., Perham, R. N. (1994) Structural dependence of post-translational modification and reductive acetylation of the lipoyl domain of the pyruvate dehydrogenase multienzyme complex. J. Mol. Biol. 236, 209-216. <https://doi.org/10.1006/jmbi.1994.1130>
33. Walvoort, M. T., Testa, C., Eilam, R., Aharoni, R., Nuti, F., Rossi, G., Real-Fernandez, F., Lanzillo, R., Brescia Morra, V., Lolli, F., Rovero, P., Imperiali, B., Papini, A. M. (2016) Antibodies from multiple sclerosis patients preferentially recognize hyperglucosylated adhesin of non-typeable Haemophilus influenzae. Sci. Rep. 6, 39430. <https://doi.org/10.1038/srep39430>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Archive