Fol. Biol. 2019, 65, 159-169
https://doi.org/10.14712/fb2019065040159
Polymorphisms rs2167444 and rs508384 in the SCD1 Gene Are Linked with High ApoB-48 Levels and Adverse Profile of Cardiometabolic Risk Factors
References
1. 1996) Simple methods of quantifying oxidation products and antioxidant potential of low-density lipoproteins. Clin. Biochem. 29, 139-144.
< , M., Ruutu, M., Mantyla, E. (https://doi.org/10.1016/0009-9120(95)02043-8>
2. 2006) Metabolic syndrome – a new world-wide definition. A consensus statement from the International Diabetes Federation. Diabet. Med. 23, 469-480.
< , K. G., Zimmet, P., Shaw, J. (https://doi.org/10.1111/j.1464-5491.2006.01858.x>
3. 2012) Exploring the value of apoB48 as a marker for atherosclerosis in clinical practice. Eur. J. Clin. Invest. 42, 702-708.
< , A., Valdivielso, P., Elte, J. W., Janssen, H. W., Rioja, J., van der Meulen, N., van Mechelen, R., Njo, T. L., González-Santos, P., Rietveld, A. P., Cabezas, M. C. (https://doi.org/10.1111/j.1365-2362.2011.02635.x>
4. 2017) Insight into stearoyl-CoA desaturase-1 regulation of systemic metabolism. Trends Endocrinol. Metab. 28, 831-842.
< , A. M., Seyed, D. N., Ntambi, J. M. (https://doi.org/10.1016/j.tem.2017.10.003>
5. 2012) Heterogeneity of the stearoyl-CoA desaturase-1 (SCD1) gene and metabolic risk factors in the EPIC-Potsdam Study. PLoS One 11, e48338.
< , M., Buijsse, B., Stefan, N., Corella, D., Fisher, E., di Giuseppe, R., Coltell, O., Knüppel, S., Aleksandrova, K., Joos, H.-G., Boeing, H., Weikert, C. (https://doi.org/10.1371/journal.pone.0048338>
6. 2010) Plasma and erythrocyte fatty acid patterns in patients with recurrent depression: a matched case-control study. PLoS One 5, e10635.
< , J., Pouwer, F., Lok, A., Mocking, R. J., Bockting, C. L., Visser, I., Abeling, N. G., Duran, M., Schene, A. H. (https://doi.org/10.1371/journal.pone.0010635>
7. 2014) Cancer death is related to high palmitoleic acid in serum and to polymorphisms in the SCD-1 gene in healthy Swedish men. Am. J. Clin. Nutr. 99, 551-558.
< , L., Kilander, L., Warensjö, E., Lemming, E., Michaëlsson, K., Vessby, B. (https://doi.org/10.3945/ajcn.113.065714>
8. 2012) Apolipoprotein B-48 as a determinant of endothelial function in obese subjects with type 2 diabetes mellitus: effect of fenofibrate treatment. Atherosclerosis 221, 484-489.
< , D. C., Wong, A. T., Yamashita, S., Wats, G. F. (https://doi.org/10.1016/j.atherosclerosis.2012.01.029>
9. Das, U. N. (2010) Metabolic Syndrome Pathophysiology. The Role of Essential Fatty Acids. Willey-Blackwell, Iowa.
10. 2014) The composition and metabolism of large and small LDL. Curr. Opin. Lipidol. 25, 221-226.
< , M. R., Schaefer, E. J. (https://doi.org/10.1097/MOL.0000000000000067>
11. 1974) Body fat assessed from the total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 71 years. Br. J. Nutr. 32, 77-97.
< , J. V., Womersley, J. (https://doi.org/10.1079/BJN19740060>
12. 1992) The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Radic. Biol. Med. 13, 341-390.
< , H., Gebicki, J., Puhl, H., Jürgens, G. (https://doi.org/10.1016/0891-5849(92)90181-F>
13. Fazio, S., Linton, M. F. (2015) Regulation and clearance of apolipoprotein B-containing lipoproteins. In: Clinical Lipidology. A Companion to Braunwald´s Heart Disease, 2nd Edition, ed. Ballantyne, C. M., pp. 11-24, Elsevier, Philadelphia.
14. 2006) The hypertriglyceridemic waist phenotype is a predictor of elevated levels of small, dense LDL cholesterol. Lipids 41, 647-654.
< , I. F., Filippatos, T. D., Tsimihodimos, V., Saougos, V. G., Liberopoulos, E. N., Mikhailidis, D. P., Tselepis, A. D., Elisaf, M. (https://doi.org/10.1007/s11745-006-5015-8>
15. 2011) Genetic variation in stearoyl-CoA desaturase 1 is associated with metabolic syndrome prevalence in Costa Rican adults. J. Nutr. 141, 2211-2218.
< , J., Campos, H., McGarvey, S., Wu, Z., Goldberg, R., Baylin, A. (https://doi.org/10.3945/jn.111.143503>
16. 2008) Remarkable increase of apolipoprotein B48 level in diabetic patients with end-stage renal disease. Atherosclerosis 197, 154-158.
< , T., Hirano, T., Taira, T., Tokuno, A., Mori, Y., Koba, S., Adachi, M. (https://doi.org/10.1016/j.atherosclerosis.2007.03.015>
17. 2001) Association of the Glu298Asp polymorphism in the endothelial nitric oxide synthase gene with essential hypertension resistant to conventional therapy. Biochem. Biophys. Res. Commun. 284, 426-430.
< , M., Horký, K., Bultas, J., Kozich, V., Jindra, A., Peleska, J., Martásek, P. (https://doi.org/10.1006/bbrc.2001.5007>
18. 2015) Association between erythrocyte membrane fatty acids and biomarkers of dyslipidemia in the EPIC-Potsdam study. Eur. J. Clin. Nutr. 69, 642-646.
< , S., Schiller, K., Jansen, E., Fritsche, A., Weikert, C., di Giuseppe, R., Boeing, H., Schulze, M. B., Kröger, J. (https://doi.org/10.1038/ejcn.2015.36>
19. 2009) Plasma fatty acid composition, estimated desaturase activities, and intakes of energy and nutrient in Japanese men with abdominal obesity or metabolic syndrome. J. Nutr. Sci. Vitaminol. (Tokyo) 55, 400-406.
< , A., Sugawara, S., Okita, M., Akahane, T., Fukui, K., Hashiuchi, M., Kataoka, C., Tsukamoto, I. (https://doi.org/10.3177/jnsv.55.400>
20. 2018) Protein engineering: Regulatory perspectives of stearoyl CoA desaturase. Int. J. Biol. Macromol. 114, 692-699.
< , S., Saleem, A., Rehman, S., Bibi, I., Iqbal, H. M. N. (https://doi.org/10.1016/j.ijbiomac.2018.03.171>
21. 2009) Increased serum apolipoprotein B48 concentration in patients with metabolic syndrome. J. Atheroscler. Thromb. 16, 517-522.
< , M., Ohnishi, H., Maeda, T., Yoshimura, N., Takeoka, Y., Yasuda, D., Kusano, J., Mashimo, Y., Saito, S., Shimamoto, K., Teramoto, T. (https://doi.org/10.5551/jat.No604>
22. 2016) Stearoyl-CoA desaturase-1 and adaptive signaling. Biochim. Biophys. Acta 1861, 1719-1726.
< , A., Löser, K., Thürmer, M. (https://doi.org/10.1016/j.bbalip.2016.08.009>
23. 2012) Recent insight into the relation of Δ5 desaturase and Δ6 desaturase activity to the development of type 2 diabetes. Curr. Opin. Lipidol. 23, 4-10.
< , J., Schulze, M. B. (https://doi.org/10.1097/MOL.0b013e32834d2dc5>
24. 2012) Fasting apolipoprotein B48 is associated with asymptomatic peripheral arterial disease in type 2 diabetic subjects: a case-control study. Atherosclerosis 223, 504-506.
< , E., Cipriano, P., Patti, L., Romano, G., Vaccaro, O., Rivellese, A. A. (https://doi.org/10.1016/j.atherosclerosis.2012.05.038>
25. 2004) Analysis of the contribution to type 2 diabetes susceptibility of sequence variation in the gene encoding stearoyl-CoA desaturase, a key regulator of lipid and carbohydrate metabolism. Diabetologia 47, 2168-2175.
< , C. F., Groves, C. J., Wiltshire, S., Zeggini, E., Frayling, T. M., Owen, K. R., Walker, M., Hitman, G. A., Levy, J. C., O’Rahilly, S., Hattersley, A. T., Johnston, D. G., McCarthy, M. I. (https://doi.org/10.1007/s00125-004-1575-4>
26. Lohman, T. G., Roche, A. F., Martorell, R. (1988) Anthropometric Standardization Reference Manual. Human Kinetics Books, Champaign, IL.
27. 2014) Association of erythrocyte membrane fatty acids with changes in glycemia and risk of type 2 diabetes. Am. J. Clin. Nutr. 99, 79-85.
< , Y., Agren, J., Uusitupa, M., Cederberg, H., Vangipurapu, J., Stančáková, A., Schwab U., Kuusisto J., Laakso M. (https://doi.org/10.3945/ajcn.113.069740>
28. 2013) Fasting apolipoprotein B48 is a marker for peripheral arterial disease in type 2 diabetes. Acta Diabetol. 50, 383-389.
< , J., Sánchez-Caparro, M. A., Rioja, J., Ariza, M. J., Olivecrona, G., González-Santos, P., Valdivielso, P. (https://doi.org/10.1007/s00592-012-0434-x>
29. 2013) Polymorphisms in the SCD1 gene are associated with indices of stearoyl CoA desaturase activity and obesity: a prospective study. Mol. Nutr. Food Res. 57, 2177-2184.
< , G. M., Cabrera-Mulero, R., Rojo-Martínez, G., Gómez-Zumaquero, J. M., Chaves, F. J., de Marco, G., Soriguer, F., Castaño, L., Morcillo, S. (https://doi.org/10.1002/mnfr.201300208>
30. 2012) Correlation of fasting serum apolipoprotein B-48 with coronary artery disease prevalence. Eur. J. Clin. Invest. 42, 992-999.
< , D., Sugimoto, T., Tsujii, K.-I., Inagaki, M., Nakatani, K., Yuasa-Kawase, M., Tsubakio-Yamamoto, K., Ohama, T., Nishida, M., Ishigami, M., Kawamoto, T., Matsuyama, A., Sakai, N., Komuro, I., Yamashita, S. (https://doi.org/10.1111/j.1365-2362.2012.02687.x>
31. 2014) Reference interval for the apolipoprotein B-48 concentration in healthy Japanese individuals. J. Atheroscler. Thromb. 21, 618-627.
< , D., Nishida, M., Arai, T., Hanada, H., Yoshida, H., Yamauchi-Takihara, K., Moriyama, T., Tada, N., Yamashita, S. (https://doi.org/10.5551/jat.22558>
32. 2017) Postprandial hyperlipidemia and remnant lipoproteins. J. Atheroscler. Thromb. 24, 95-109.
< , D., Yamashita, S. (https://doi.org/10.5551/jat.RV16003>
33. 1985) Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28, 412-419.
< , D. R., Hosker, J. P., Rudenski, A. S., Naylor, B. A., Treacher, D. F., Turner, R. C. (https://doi.org/10.1007/BF00280883>
34. 2011) Hormonal and nutritional regulation of SCD1 gene expression. Biochimie 93, 78-86.
< , D., Mounier, C. (https://doi.org/10.1016/j.biochi.2010.08.001>
35. 2010) Genetic variation in lipid desaturases and its impact on the development of human disease. Lipids Health Dis. 9, 63.
< , D. M., Ma, D. W., Mutch, D. M. (https://doi.org/10.1186/1476-511X-9-63>
36. 2011) Polymorphisms in FADS1 and FADS2 alter desaturase activity in young Caucasian and Asian adults. Mol. Genet. Metab. 103, 171-178.
< , D. M., Johnston, H., Clarke, S., Roke, K., Nielsen, D., Badawi, A., El-Sohemy, A., Ma, D. W., Mutch, D. M. (https://doi.org/10.1016/j.ymgme.2011.02.012>
37. 1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 16, 1215.
< , S. A., Dykes, D. D., Polesky, H. F. (https://doi.org/10.1093/nar/16.3.1215>
38. 2013) Fasting serum concentration of apolipoprotein B48 represents residual risks in patients with new-onset and chronic coronary artery disease. Clin. Chim. Acta 421, 51-56.
< , K., Ishida, T., Yasuda, T., Monguchi, T., Sasaki, M., Kondo, K., Hasokawa, M., Nakajima, H., Haraguchi., Y, Sun, L., Shinohara, M., Toh, R., Nishimura, K., Hirata, K.- I. (https://doi.org/10.1016/j.cca.2013.02.005>
39. 2006) The oxidative modification hypothesis of atherosclerosis: the comparison of atherogenic effects on oxidized LDL and remnant lipoproteins in plasma. Clin. Chim. Acta 367, 36-47.
< , K., Nakano, T., Tanaka, A. (https://doi.org/10.1016/j.cca.2005.12.013>
40. 2018) Atherogenic postprandial remnant lipoproteins; VLDL remnants as a causal factor in atherosclerosis. Clin. Chim. Acta 478, 200-215.
< , K., Tanaka, A. (https://doi.org/10.1016/j.cca.2017.12.039>
41. 2013) Diabetic dyslipidemia: from evolving pathophysiological insight to emerging therapeutic targets. Can. J. Diabetes 37, 319-326.
< , D. S. (https://doi.org/10.1016/j.jcjd.2013.07.062>
42. 2014) Serum apolipoprotein B-48 concentration is associated with a reduced estimated glomerular filtration rate and increased proteinuria. J. Atheroscler. Thromb. 21, 974-982.
< , M., Hanada, H., Matsui, M., Hidaka, Y., Masuda, D., Sakata, Y., Yamashita, S. (https://doi.org/10.5551/jat.23309>
43. 2009) Fasting and postprandial apolipoprotein B-48 levels in healthy, obese and hyperlipidemic subjects. Metabolism 58, 1536-1542.
< , S., Ai, M., Diffenderfer, M. R., Asztalos, B. F., Tanaka, A., Lamon-Fava, S., Schaefer, E. J. (https://doi.org/10.1016/j.metabol.2009.04.040>
44. 2009) Biochemical and physiological function of stearoyl-CoA desaturase. Am. J. Physiol. Endocrinol. Metab. 297, E28-E37.
< , C. M., Ntambi, J. M. (https://doi.org/10.1152/ajpendo.90897.2008>
45. 2015) Stearoyl-CoA desaturase-1: is it the link between sulphur amino acids and lipid metabolism? Biology (Basel) 4, 383-396.
, S., Blom, H. J., Schwartzs, I. V. (
46. 2014) Cardiometabolic risk factors are influenced by stearoyl-CoA desaturase (SCD)-1 gene polymorphisms and n-3 polyunsaturated fatty acid supplementation. Mol. Nutr. Food Res. 58, 1079-1086.
< , I., Julien, P., Couture, P., Lemieux, S., Tchernof, A., Barbier, O., Vohl, M. C. (https://doi.org/10.1002/mnfr.201300426>
47. 2013) Abdominal adiposity is associated with fatty acid desaturase activity in boys: implications for C-reactive protein and insulin resistance. Prostaglandins Leukot. Essent. Fatty Acids 88, 307-311.
< , E., Okada, T., Abe, Y., Odaka, M., Kuromori, Y., Iwata, F., Hara, M., Mugishima, H., Kitamura, Y. (https://doi.org/10.1016/j.plefa.2013.01.005>
48. 2003) Measurement of fasting serum apoB-48 levels in normolipidemic and hyperlipidemic subjects by ELISA. J. Lipid Res. 44, 1256-1262.
< , N., Uchida, Y., Ohashi, K., Hibuse, T., Saika, Y., Tomari, Y., Kihara S, Hiraoka H, Nakamura T, Ito S, Yamashita S, Matsuzawa Y. (https://doi.org/10.1194/jlr.M300090-JLR200>
49. 1975) A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J. Mol. Biol. 94, 441-448.
< , F., Coulson, A. R. (https://doi.org/10.1016/0022-2836(75)90213-2>
50. 1977) DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74, 5463-5467.
< , F., Nicklen, S., Coulson, A. R. (https://doi.org/10.1073/pnas.74.12.5463>
51. 2015) The subtle balance between lipolysis and lipogenesis. A critical point in metabolic homeostasis. Nutrients 7, 9453-9474.
< , C., Gaggini, M., Carli, F., Gastaldelli, A. (https://doi.org/10.3390/nu7115475>
52. 2009) Significance of measuring serum concentrations of remnant lipoproteins and apolipoprotein B-48 in fasting period. J. Atheroscl. Thromb. 16, 12-20.
< , I., Ishikawa, Y., Ishimoto, A., Katsura, S., Toyokawa, A., Hayashi, F., Kawano, S., Fujioka, Y., Yamashita, S., Kumagai, S. (https://doi.org/10.5551/jat.E596>
53. 2012) Enzymatic activity and genetic variation in SCD1 modulate the relationship between fatty acids and inflammation. Mol. Genet. Metab. 105, 421-427.
< , C., Roke, K., Clarke, S., Nielsen, D., Badawi, A., El-Sohemy, A., Ma, D. W., Mutch, D. M. (https://doi.org/10.1016/j.ymgme.2011.12.003>
54. 2015) Adipose tissue fatty acid chain length and non-unsaturation increases with obesity and insulin resistance. Sci. Rep. 5, 18366.
< , C. Y., Virtue, S., Murfitt, S., Robert, L. D., Phua, Y. H., Dale, M., Griffin, J. L., Tinahones, F., Scherer, P. E., Vidal- Puig, A. (https://doi.org/10.1038/srep18366>
55. 2008) Association of serum apolipoprotein B48 level with the presence of carotid plaque in type 2 diabetes mellitus. Diabetes Res. Clin. Pract. 81, 338-344.
< , K., Nakajima, Y., Nagao, M., Ishizaki, A., Kano, T., Harada, T., Okajima, F., Sudo, M., Tamura, H., Ishii, S., Sugihara, H., Yamashita, S., Asai, A., Oikawa, S. (https://doi.org/10.1016/j.diabres.2008.04.028>
56. 2014) Delta-5 and delta-6 desaturases: crucial enzymes in polyunsaturated fatty acid-related pathways with pleiotropic influences in health and disease. Adv. Exp. Med. Biol. 824, 61-81.
< , F., Sartori, F., Guarini, P., Olivieri, O., Martinelli, N. (https://doi.org/10.1007/978-3-319-07320-0_7>
57. 2002) Analysis of fatty acids in plasma lipoproteins by gas chromatography-flame ionisation detection. Quantitative aspects. Anal. Chim. Acta 465, 337-350.
< , E., Vecka, M., Stankova, B., Zak, A. (https://doi.org/10.1016/S0003-2670(02)00396-3>
58. 2016) Recent progress in the discovery and development of stearoyl CoA desaturase inhibitors. Chem. Phys. Lipids 197, 3-12.
< , Y. (https://doi.org/10.1016/j.chemphyslip.2015.08.018>
59. 2010) Postprandial apolipoprotein B48 is associated with asymptomatic peripheral arterial disease: a study in patients with type 2 diabetes and controls. Clin. Chim. Acta 411, 433-437.
< , P., Puerta, S., Rioja, J., Alonso, I., Ariza, M. J., Sánchez-Chaparro, M. A., Palacios, R., González-Santos, P. (https://doi.org/10.1016/j.cca.2009.12.022>
60. 2012) Plasma fatty acid profile in depressive disorder resembles insulin resistance state. Neuro Endocrinol. Lett. 33(Suppl. 2), 83-86.
, T., Vecka, M., Jirak, R., Tvrzicka, E., Macasek, J., Zak, A., Zeman, M. (
61. 2013) Elevated remnant lipoproteins may increase subclinical CVD risk in pre-pubertal children with obesity: a case-control study. Pediatr. Obes. 8, 376-384.
< , Y., Pendlebury, C., Dodd, M. M., Maximova, K., Vine, D. F., Jetha, M. M., Ball, G. D., Proctor, S. D. (https://doi.org/10.1111/j.2047-6310.2012.00116.x>
62. 2006) Fatty acid composition and estimated desaturase activities are associated with obesity and lifestyle variables in men and women. Nutr. Metab. Cardiovasc. Dis. 16, 128-136.
< , E., Ohrvall, M., Vessby, B. (https://doi.org/10.1016/j.numecd.2005.06.001>
63. 2007) Polymorphisms in the SCD1 gene: associations with body fat distribution and insulin sensitivity. Obesity (Silver Spring) 15, 1732-1740.
< , E., Ingelsson, E., Lundmark, P., Lannfelt, L., Syvänen, A. C., Vessby, B., Risérus, U. (https://doi.org/10.1038/oby.2007.206>
64. 2008) Effects of saturated and unsaturated fatty acids on estimated desaturase activities during a controlled dietary intervention. Nutr. Metab. Cardiovasc. Dis. 18, 683-690.
< , E., Risérus, U., Gustafsson, I. B., Mohsen, R., Cederholm, T., Vessby, B. (https://doi.org/10.1016/j.numecd.2007.11.002>
65. 2007) Severity of metabolic syndrome unfavorably influences oxidative stress and fatty acid metabolism in men. Tohoku J. Exp. Med. 212, 359-371.
< , A., Tvrzická, E., Vecka, M., Jachymová, M., Duffková, L., Stanková, B., Vavrova, L., Kodydkova, J., Zeman, M. (https://doi.org/10.1620/tjem.212.359>
66. 2014) Fatty acid composition indicates two types of metabolic syndrome independent of clinical and laboratory parameters. Physiol. Res. 63(Suppl. 3), S375-S385.
< , A., Burda, M., Vecka, M., Zeman, M., Tvrzicka, E., Stanková, B. (https://doi.org/10.33549/physiolres.932868>
67. Zeman, M., Vecka, M., Burda, M., Tvrzicka, E., Stanková, B., Macasek, J., Zak, A. (2017) Fatty acid composition of plasma phosphatidylcholine determines body fat parameters in subjects with metabolic syndrome-related traits. Metab. Syndr. Relat. Disord. 15,