Fol. Biol. 2020, 66, 24-35
https://doi.org/10.14712/fb2020066010024
Domination of Filamentous Anoxygenic Phototrophic Bacteria and Prediction of Metabolic Pathways in Microbial Mats from the Hot Springs of Al Aridhah
References
1. 1988) Geothermal resources in Saudi Arabia. Geothermics 17, 465-476.
< , M. (https://doi.org/10.1016/0375-6505(88)90076-4>
2. 2018) Diurnal changes in active carbon and nitrogen pathways along the temperature gradient in Porcelana hot spring microbial mat. Front. Microbiol. 9, 2353.
< , M. E., Pedros-Alio, C., Tamames, J., Fernandez, C., Perez-Pantoja, D., Vasquez, M., Diez, B. (https://doi.org/10.3389/fmicb.2018.02353>
3. 2006) Effect of temperature and light on growth of and photosynthesis by Synechococcus isolates typical of those predominating in the octopus spring microbial mat community of Yellowstone National Park. Appl. Environ. Microbiol. 72, 544-550.
< , J. P., Bateson, M. M., Revsbech, N. P., Slack, K., Ward, D. M. (https://doi.org/10.1128/AEM.72.1.544-550.2006>
4. 2016) Rhizosphere microbiome metagenomics of gray mangroves (Avicennia marina) in the Red Sea. Gene 576(2 Pt 1), 626-636.
< , H., Essack, M., Malas, T. B., Bokhari, A., Motwalli, O., Kamanu, F. K., Jamhor S. A., Mokhtar, N. A., Antunes, A., Simões, M. F., Alam, I., Bougouffa, S., Lafi, F. F., Bajic, V. B., Archer, J. A. (https://doi.org/10.1016/j.gene.2015.10.032>
5. 1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143-169.
< , R. I., Ludwig, W., Schleifer, K. H. (https://doi.org/10.1128/mr.59.1.143-169.1995>
6. 2007) Population level functional diversity in a microbial community revealed by comparative genomic and metagenomic analyses. ISME J. 1, 703-713.
< , D., Grossman, A. R., Steunou, A. S., Khuri, N., Cohan, F. M., Hamamura, N., Melendrez, M. C., Bateson, M. M., Ward, D. M., Heidelberg, J. F. (https://doi.org/10.1038/ismej.2007.46>
7. Bryant, D. A., Liu, Z., Li, T., Zhao, F., Costas, A. M. G., Klatt, C. G., Ward D. M, Frigaard N-U, Overmann J. (2012) Comparative and functional genomics of anoxygenic green bacteria from the taxa Chlorobi, Chloroflexi, and Acidobacteria. In: Advances in Photosynthesis and Respiration: Functional Genomics and Evolution of Photosynthetic Systems. eds. Burnap, R., Vermaas, W., vol 33, pp. 47-102, Springer, Dordrecht, The Nederlands.
8. 2010) QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335-336.
< , J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., Fierer, N., Peña, A. G., Goodrich, J. K., Gordon, J. I., Huttley, G. A., Kelley, S. T., Knights, D., Koenig, J. E., Ley, R. E., Lozupone, C. A., McDonald, D., Muegge, B. D., Pirrung, M., Reeder, J., Sevinsky, J. R., Turnbaugh, P. J., Walters, W. A., Widmann, J., Yatsunenko, T., Zaneveld, J., Knight, R. (https://doi.org/10.1038/nmeth.f.303>
9. 1973) The possible photosynthetic use of sulfide by the filamentous phototrophic bacteria of hot springs. Limnol. Oceanogr. 18, 863-876.
< , R. W. (https://doi.org/10.4319/lo.1973.18.6.0863>
10. 2015) Diversity of thermophiles in a Malaysian hot spring determined using 16S rRNA and shotgun metagenome sequencing. Front. Microbiol. 6, 177.
, C. S., Chan, K. G., Tay, Y. L., Chua, Y. H., Goh, K. M. (
11. 2013) Archaeal and bacterial diversity in two hot spring microbial mats from a geothermal region in Romania. Extremophiles 17, 523-534.
< , C., Druga, B., Hegedus, A., Sicora, C., Dragos, N. (https://doi.org/10.1007/s00792-013-0537-5>
12. 1974). Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. J. Sediment. Res. 44, 242-248.
, W. E. (
13. 2008) Bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP) for microbiome studies: bacterial diversity in the ileum of newly weaned Salmonella-infected pigs. Foodborne Pathog. Dis. 5, 459-472.
< , S. E., Sun, Y., Wolcott, R. D., Domingo, A., Carroll, J. A. (https://doi.org/10.1089/fpd.2008.0107>
14. 2012) Complete genome of Candidatus Chloracidobacterium thermophilum, a chlorophyll- based photoheterotroph belonging to the phylum Acidobacteria. Environ. Microbiol. 14, 177-190.
< Costas, A. M., Liu, Z., Tomsho, L. P., Schuster, S. C., Ward, D. M., Bryant, D. A. (https://doi.org/10.1111/j.1462-2920.2011.02592.x>
15. 2012) Thermo-aerobic bacteria from geothermal springs in Saudi Arabia. Afr. J. Biotechnol. 11, 4053-4062.
, M. A., Serour, E. A., Shehata, M. M., Bahklia, A. H. (
16. 2015) Diel metabolomics analysis of a hot spring chlorophototrophic microbial mat leads to new hypotheses of community member metabolisms. Front. Microbiol. 6, 209.
, Y. M., Nowack, S., Olsen, M. T., Becraft, E. D., Wood, J. M., Thiel, V., Klapper, I., Kühl, M., Fredrickson, J. K., Bryant, D. A., Ward, D. M., Metz, T. O. (
17. 2011) Community ecology of hot spring cyanobacterial mats: predominant populations and their functional potential. ISME J. 5, 1262-1278.
< , C. G., Wood, J. M., Rusch, D. B., Bateson, M. M., Hamamura, N., Heidelberg, J. F., Grossman, A. R., Bhaya, D., Cohan, F. M., Kühl, M., Bryant, D. A., Ward, D. M. (https://doi.org/10.1038/ismej.2011.73>
18. 2013) Temporal metatranscriptomic patterning in phototrophic Chloroflexi inhabiting a microbial mat in a geothermal spring. ISME J. 7, 1775-1789.
< , C. G., Liu, Z., Ludwig, M., Kuhl, M., Jensen, S. I., Bryant, D. A., Ward, D. M. (https://doi.org/10.1038/ismej.2013.52>
19. 2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814-821.
< , M. G., Zaneveld, J., Caporaso, J. G., McDonald, D., Knights, D., Reyes, J. A., Clemente, J. C., Burkepile, D. E., Vega Thurber, R. L., Knight, R., Beiko, R. G., Huttenhower, C. (https://doi.org/10.1038/nbt.2676>
20. 2012) PANDAseq: paired-end assembler for illumina sequences. BMC Bioinformatics 13, 31.
< , A. P., Bartram, A. K., Truszkowski, J. M., Brown, D. G., Neufeld, J. D. (https://doi.org/10.1186/1471-2105-13-31>
21. 2002) Microscopic examination of distribution and phenotypic properties of phylogenetically diverse Chloroflexaceae-related bacteria in hot spring microbial mats. Appl. Environ. Microbiol. 68, 4593-4603.
< , U., Bateson, M. M., Vandieken, V., Wieland, A., Kuhl, M., Ward, D. M. (https://doi.org/10.1128/AEM.68.9.4593-4603.2002>
22. 2012) Bacterial and archaeal diversity in two hot spring microbial mats from the geothermal region of Tengchong, China. Extremophiles 16, 607-618.
< , E., Grant, W. D., Cowan, D. A., Jones, B. E., Ma, Y., Ventosa, A., Heaphy, S. (https://doi.org/10.1007/s00792-012-0460-1>
23. 2016) Bacterial and archeal community composition in hot springs from Indo-Burma region, North-east India. AMB Express 6, 111.
< , A. K., Bisht, S. S., De Mandal, S., Kumar, N. S. (https://doi.org/10.1186/s13568-016-0284-y>
24. 1974) A phototrophic gliding filamentous bacterium of hot springs, Chloroflexus aurantiacus, gen. and sp. nov. Arch. Microbiol. 100, 5-24.
< , B. K., Castenholz, R. W. (https://doi.org/10.1007/BF00446302>
25. 2017) Biodiversity of the microbial mat of the Garga hot spring. BMC Evol. Biol. 17 (Suppl 2), 254.
< , A. S., Bryanskaya, A. V., Ivanisenko, T. V., Malup, T. K., Peltek, S. E. (https://doi.org/10.1186/s12862-017-1106-9>
26. 2017) Comparative analysis of 16S rRNA gene Illumina sequence for microbial community structure in diverse unexplored Hot Springs of Odisha, India. Geomicrobiol. J. 34, 567-576.
< , R. K., Gaur, M., Das, A., Singh, A., Kumar, M., Subudhi, E. (https://doi.org/10.1080/01490451.2016.1238980>
27. 2009) Actinobacterial diversity in hot springs in Tengchong (China), Kamchatka (Russia), and Nevada (USA). Geomicrobiol. J. 26, 256-263.
< , Z., Zhi, X., Li, W., Jiang, H., Zhang, C., Dong, H. (https://doi.org/10.1080/01490450902892373>
28. 2017) The dark side of the Mushroom spring microbial mat: life in the shadow of chlorophototrophs. II. metabolic functions of abundant community members predicted from metagenomic analyses. Front. Microbiol. 8, 943.
< , V., Hugler, M., Ward, D. M., Bryant, D. A. (https://doi.org/10.3389/fmicb.2017.00943>
29. 2016) Analysis of the metatranscriptome of microbial communities of an alkaline hot sulfur spring revealed different gene encoding pathway enzymes associated with energy metabolism. Extremophiles 20, 525-536.
< , S., Padhi, S. K., Mohanty, S., Samanta, M., Maiti, N. K. (https://doi.org/10.1007/s00792-016-0846-6>
30. 2005) Methylothermus thermalis gen. nov., sp. nov., a novel moderately thermophilic obligate methanotroph from a hot spring in Japan. Int. J. Syst. Evol. Microbiol. 55 (Pt 5), 1877-1884.
< , J., Eshinimaev, B., Khmelenina, V. N., Trotsenko, Y. A. (https://doi.org/10.1099/ijs.0.63691-0>
31. 2017) Comparative bacterial community analysis in relatively pristine and anthropogenically influenced mangrove ecosystems on the Red Sea. Can. J. Microbiol. 63, 649-660.
< , R., Yasir, M., Khan, I., Bibi, F., Sohrab, S. S., Al-Ansari, A., Al-Abbasi, F., Al-Sofyani, A. A., Daur, I., Lee, S. W., Azhar, E. I. (https://doi.org/10.1139/cjm-2016-0587>
32. 2015) Comparison of the microbial communities of hot springs waters and the microbial biofilms in the acidic geothermal area of Copahue (Neuquen, Argentina). Extremophiles 19, 437-450.
< , M. S., Gonzalez-Toril, E., Bazan, A. A., Giaveno, M. A., Donati, E. (https://doi.org/10.1007/s00792-015-0729-2>
33. 2019) The influence of temperature and pH on bacterial community composition of microbial mats in hot springs from Costa Rica. Microbiologyopen, 8, e893.
< , L., Brenes-Guillen, L., Hernandez-Ascencio, W., Mora-Amador, R., Gonzalez, G., Ramirez-Umana, C. J., Díez, B., Pedrós-Alió, C. (https://doi.org/10.1002/mbo3.893>
34. 2019) Geochemical and metagenomic characterization of Jinata Onsen, a proterozoic-analog hot spring, reveals novel microbial diversity including irontolerant phototrophs and thermophilic lithotrophs. Microbes Environ. 34, 278-292.
< , L. M., Idei, A., Nakagawa, M., Ueno, Y., Fischer, W. W., McGlynn, S. E. (https://doi.org/10.1264/jsme2.ME19017>
35. 2019) Metagenome-assembled genomes provide new insight into the microbial diversity of two thermal pools in Kamchatka, Russia. Sci. Rep. 9, 3059.
< , L. G. E., Ettinger, C. L., Jospin, G., Eisen, J. A. (https://doi.org/10.1038/s41598-019-39576-6>
36. 2015a) Comparison of the gut microbiota of people in France and Saudi Arabia. Nutr. Diabetes 5, e153.
< , M., Angelakis, E., Bibi, F., Azhar, E. I., Bachar, D., Lagier, J. C., (https://doi.org/10.1038/nutd.2015.3>
37. 2015b) Composition of soil microbiome along elevation gradients in southwestern highlands of Saudi Arabia. BMC Microbiol. 15, 65.
< , M., Azhar, E. I., Khan, I., Bibi, F., Baabdullah, R., Al- Zahrani, I. A., Al-Ghamdi, A. K. (https://doi.org/10.1186/s12866-015-0398-4>
38. 2018) Analysis of bacterial communities and characterization of antimicrobial strains from cave microbiota. Braz. J. Microbiol. 49, 248-257.
< , M. (https://doi.org/10.1016/j.bjm.2017.08.005>
39. 2019) Culturomics-based taxonomic diversity of bacterial communities in the hot springs of Saudi Arabia. OMICS 23, 17-27.
< , M., Qureshi, K. A., Khan, I., Bibi, F., Rehan, M., Khan, S. B., Azhar E. I. (https://doi.org/10.1089/omi.2018.0176>