Fol. Biol. 2020, 66, 36-46
https://doi.org/10.14712/fb2020066010036
Kaempferol Induces Cell Death in A2780 Ovarian Cancer Cells and Increases Their Sensitivity to Cisplatin by Activation of Cytotoxic Endoplasmic Reticulum-Mediated Autophagy and Inhibition of Protein Kinase B
References
1. 2007) Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J. Clin. Invest. 117, 326-336.
< , R. K., Yu, D., Lum, J. J., Bui, T., Christophorou, M. A., Evan, G. I., Thomas-Tikhonenko, A., Thompson, C. B. (https://doi.org/10.1172/JCI28833>
2. 2005) Polyphenols and disease risk in epidemiologic studies. Am. J. Clin. Nutr. 81, 317S-325S.
< , I. C., Hollman, P. C. (https://doi.org/10.1093/ajcn/81.1.317S>
3. 2001) The epidemiology of ovarian cancer. Methods Mod. Med. 39, 3-11.
, E. (
4. 2013) Anti-cancer potential of flavonoids: recent trends and future perspectives. 3 Biotech. 3, 439-459.
< , P., Sharma, A. (https://doi.org/10.1007/s13205-013-0117-5>
5. 2018) Secretory autophagy of lysozyme in Paneth cells. Autophagy 14, 719-721.
< , S., Hooper, L. V. (https://doi.org/10.1080/15548627.2018.1430462>
6. 2000) Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat. Cell. Biol. 2, 326.
< , A., Zhang, Y., Hendershot, L. M., Harding, H. P., Ron, D. (https://doi.org/10.1038/35014014>
7. 2018) 4-PBA ameliorates cellular homeostasis in fibroblasts from osteogenesis imperfecta patients by enhancing autophagy and stimulating protein secretion. Biochim. Biophys. Acta Mol. Basis Dis. 1864, 1642-1652.
< , R., Iula, G., Garibaldi, N., Cipolla, L., Sabbioneda, S., Biggiogera, M., Marini, J. C., Rossi, A., Forlino, A. (https://doi.org/10.1016/j.bbadis.2018.02.002>
8. 1998) The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res. 58, 1408-1416.
, J. M., Giaccia, A. J. (
9. 2007) Modulating autophagy for therapeutic benefit. Autophagy 3, 464-467.
< , J. S., Nawrocki, S. T., Cleveland, J. L. (https://doi.org/10.4161/auto.4311>
10. 2013) A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chem. 138, 2099-2107.
< , A. Y., Chen, Y. C. (https://doi.org/10.1016/j.foodchem.2012.11.139>
11. 2018) Targeting autophagy enhances apatinib-induced apoptosis via endoplasmic reticulum stress for human colorectal cancer. Cancer Lett. 431, 105-114.
< , X., Feng, H., Wu, H., Jin, Z., Shen, X., Kuang, J., Huo, Z., Chen, X., Gao, H., Ye, F. (https://doi.org/10.1016/j.canlet.2018.05.046>
12. 2016) Autophagy transduces physical constraints into biological responses. Int. J. Biochem. Cell Biol. 79, 419-426.
< , N., Codogno, P. (https://doi.org/10.1016/j.biocel.2016.08.021>
13. 2009) Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat. Rev. Cancer 9, 550.
< , J. A. (https://doi.org/10.1038/nrc2664>
14. 2008) Akt promotes cisplatin resistance in human ovarian cancer cells through inhibition of p53 phosphorylation and nuclear function. Int. J. Cancer 122, 534-546.
< , M., Bai, T., Tsang, B. K. (https://doi.org/10.1002/ijc.23086>
15. 2017) PI3K/AKT/mTOR pathway in ovarian cancer treatment: are we on the right track? Geburtshilfe Frauenheilkd 77, 1095-1103.
, M. L., Bardhi, E., Ruscito, I., Papadia, A., Farooqi, A. A., Marchetti, C., Bogani, G., Ceccacci, I., Mueller, M. D., Panici, P. B. (
16. 2007) A prospective study of dietary flavonoid intake and incidence of epithelial ovarian cancer. Int. J. Cancer 121, 2225-2232.
< , M. A., Tworoger, S. S., Hecht, J. L., De Vivo, I., Rosner, B., Hankinson, S. E. (https://doi.org/10.1002/ijc.22790>
17. 2017) Resistance to cancer chemotherapeutic drugs is determined by pivotal microRNA regulators. Am. J. Cancer Res. 7, 1350.
, M., Pulliero, A., Rosano, C., Zhabayeva, D., Bersimbaev, R., Izzotti, A. (
18. 2002) Cross-talk between Akt, p53 and Mdm2: possible implications for the regulation of apoptosis. Oncogene 21, 1299.
< , T. M., Leal, J. F. M., Seger, R., Taya, Y., Oren, M. (https://doi.org/10.1038/sj.onc.1205181>
19. 2017) Kaempferol induces hepatocellular carcinoma cell death via endoplasmic reticulum stress-CHOP-autophagy signaling pathway. Oncotarget 8, 82207.
< , H., Lin, W., Zhang, X., Zhang, X., Hu, Z., Li, L., Duan, Z., Zhang, J., Ren, F. (https://doi.org/10.18632/oncotarget.19200>
20. 2006) Sulforaphane causes autophagy to inhibit release of cytochrome C and apoptosis in human prostate cancer cells. Cancer Res. 66, 5828-5835.
< , A., Johnson, D. E., Singh, S. V. (https://doi.org/10.1158/0008-5472.CAN-06-0139>
21. 2012) The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat. Rev. Mol. Cell Biol. 13, 89-102.
< , C. (https://doi.org/10.1038/nrm3270>
22. 2018) Honokiol induces apoptosis and autophagy via the ROS/ERK1/2 signaling pathway in human osteosarcoma cells in vitro and in vivo. Death Cell Dis. 9, 157.
< , K., Chen, Y., Zhang, R., Wu, Y., Ma, Y., Fang, X., Shen, S. (https://doi.org/10.1038/s41419-017-0166-5>
23. 2018) Targeting the PI3K pathway in cancer: are we making headway? Nat. Rev. Clin. Oncol. 15, 273.
< , F., Yap, T. A., Meric-Bernstam, F. (https://doi.org/10.1038/nrclinonc.2018.28>
24. 2014) Ovarian cancer. Lancet 384, 1376-1388.
< , G. C., Kohn, E. C., Kitchener, H. C., Ledermann, J. A. (https://doi.org/10.1016/S0140-6736(13)62146-7>
25. 2008) Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat. Rev. Drug. Discov. 7, 1013.
< , I., Xu, W., Reed, J. C. (https://doi.org/10.1038/nrd2755>
26. 2013) Anti-cancer effect and underlying mechanism(s) of kaempferol, a phytoestrogen, on the regulation of apoptosis in diverse cancer cell models. Toxicol. Res. 29, 229.
< , S.-H., Choi, K.-C. (https://doi.org/10.5487/TR.2013.29.4.229>
27. 2009) PIK3CA amplification associates with resistance to chemotherapy in ovarian cancer patients. Cancer Biol. Ther. 8, 21-26.
< , I. K., Rembiszewska, A., Felisiak, A., Ziolkowska- Seta, I., Murawska, M., Moes, J., Timorek, A., Dansonka- Mieszkowska, A., Kupryjanczyk, J. (https://doi.org/10.4161/cbt.8.1.7209>
28. 2007) ER stress (PERK/eIF2α phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Differ. 14, 230.
< , Y., Fujita, E., Tanida, I., Ueno, T., Isoai, A., Kumagai, H., Ogawa, S., Kaufman, R., Kominami, E., Momoi, T. (https://doi.org/10.1038/sj.cdd.4401984>
29. 2008) Bcl-2 family members: dual regulators of apoptosis and autophagy. Autophagy 4, 600-606.
< , B., Sinha, S. C., Kroemer, G. (https://doi.org/10.4161/auto.6260>
30. 2011) Kaempferol induces apoptosis in ovarian cancer cells through activating p53 in the intrinsic pathway. Food Chem. 128, 513-519.
< , H., Rankin, G. O., Li, Z., DePriest, L., Chen, Y. C. (https://doi.org/10.1016/j.foodchem.2011.03.073>
31. 2015) The PI3K/AKT/mTOR pathway as a therapeutic target in ovarian cancer. Gynecol. Oncol. 137, 173-179.
< , S., Kuroda, H., Takahashi, R., Sasano, T. (https://doi.org/10.1016/j.ygyno.2015.02.003>
32. 2007) Self-eating and self-killing: crosstalk between autophagy and apoptosis. Rev. Mol. Cell Biol. 8, 741.
< , M. C., Zalckvar, E., Kimchi, A., Kroemer, G. (https://doi.org/10.1038/nrm2239>
33. 2012) Targeting endoplasmic reticulum signaling pathways in cancer. Acta Oncol. 51, 822-830.
< , F. (https://doi.org/10.3109/0284186X.2012.689113>
34. 2011) Autophagy: renovation of cells and tissues. Cell 147, 728-741.
< , N., Komatsu, M. (https://doi.org/10.1016/j.cell.2011.10.026>
35. 2007) Integrated endoplasmic reticulum stress responses in cancer. Cancer Res. 67, 10631-10634.
< , M., Pluquet, O., Bouchecareilh, M., Chevet, E. (https://doi.org/10.1158/0008-5472.CAN-07-1705>
36. 2011) Integrated genomic analyses of ovarian carcinoma. Nature 474, 609.
, C. G. A. R. (
37. 2010) Ghrelin: a potential therapeutic target for cancer. Regul. Pept. 163, 7-17.
< , D., Theocharis, S., Kouraklis, G. (https://doi.org/10.1016/j.regpep.2010.03.011>
38. 2002) Akt enhances Mdm2-mediated ubiquitination and degradation of p53. J. Biol. Chem. 277, 21843-21850.
< , Y., Kishishita, S., Obata, T., Isazawa, Y., Suzuki, T., Tanaka, K., Masuyama, N., Gotoh, Y. (https://doi.org/10.1074/jbc.M109745200>
39. 2009) Diverse molecular pathways in ovarian cancer and their clinical significance. Maturitas 62, 270-275.
< , C., Oehler, M. K. (https://doi.org/10.1016/j.maturitas.2009.01.001>
40. 2011) Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J. Clin. 61, 212-236.
< , R., Ward, E., Brawley, O., Jemal, A. (https://doi.org/10.3322/caac.20121>
41. 2017) Cancer statistics, 2017. CA Cancer J. Clin. 67, 7-30.
< , R. L., Miller, K. D., Jemal, A. (https://doi.org/10.3322/caac.21387>
42. 1999) In vivo studies of adenovirus-mediated p53 gene therapy for cis-platinumresistant human ovarian tumor xenografts. Oncol. Res. 11, 153-159.
, K., Cowan, K. H., Sinha, B. K. (
43. 2014) Endoplasmic reticulum stress associated responses in cancer. Biochim. Biophys. Acta 1843, 2143-2149.
< , W.-A., Groenendyk, J., Michalak, M. (https://doi.org/10.1016/j.bbamcr.2014.01.012>
44. 2011) Flavonoids health benefits and their molecular mechanism. Mini. Rev. Med. Chem. 11, 169-177.
< , Z.-P., Peng, Z.-Y., Peng, M.-J., Yan, W.-B., Ouyang, Y.- Z., Zhu, H.-L. (https://doi.org/10.2174/138955711794519546>
45. 2015) Blockade of autophagy aggravates endoplasmic reticulum stress and improves Paclitaxel cytotoxicity in human cervical cancer cells. Cancer Res. Treat. 47, 313.
< , L., Liu, J.-H., Zhang, J., Zhang, N., Wang, Z.-H. (https://doi.org/10.4143/crt.2013.222>
46. 2014) Endoplasmic reticulum stress and cancer. J. Cancer Prevent. 19, 75.
< , R. K., Chae, S.-W., Kim, H.-R., Chae, H. J. (https://doi.org/10.15430/JCP.2014.19.2.75>
47. 2018) The Role of sirt1 in ischemic stroke: pathogenesis and therapeutic strategies. Front. Neurosci. 12, 833.
< , J. F., Zhang, Y. L., Wu, Y. C. (https://doi.org/10.3389/fnins.2018.00833>
48. 2017) Kaempferol sensitizes human ovarian cancer cells – OVCAR-3 and SKOV-3 to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis via JNK/ERK-CHOP pathway and up-regulation of death receptors 4 and 5. Med. Sci. Monit. 23, 5096.
< , Y., Tian, B., Wang, Y., Ding, H. (https://doi.org/10.12659/MSM.903552>