Folia Biologica
Journal of Cellular and Molecular Biology, Charles University 

Crossref logo

Fol. Biol. 2020, 66, 36-46

https://doi.org/10.14712/fb2020066010036

Kaempferol Induces Cell Death in A2780 Ovarian Cancer Cells and Increases Their Sensitivity to Cisplatin by Activation of Cytotoxic Endoplasmic Reticulum-Mediated Autophagy and Inhibition of Protein Kinase B

Attalla Farag El-Kott1,2, A. A. Shati1, M. A. Al-Kahtani1, S. A. Alharbi3

1Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
2Zoology Department, College of Science, Damanhour University, Damanhour, Egypt
3Department of Physiology, College of Medicine, Umm Al-Qura University, Mekkah, Saudi Arabia

Received July 2019
Accepted October 2019

References

1. Amaravadi, R. K., Yu, D., Lum, J. J., Bui, T., Christophorou, M. A., Evan, G. I., Thomas-Tikhonenko, A., Thompson, C. B. (2007) Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J. Clin. Invest. 117, 326-336. <https://doi.org/10.1172/JCI28833>
2. Arts, I. C., Hollman, P. C. (2005) Polyphenols and disease risk in epidemiologic studies. Am. J. Clin. Nutr. 81, 317S-325S. <https://doi.org/10.1093/ajcn/81.1.317S>
3. Banks, E. (2001) The epidemiology of ovarian cancer. Methods Mod. Med. 39, 3-11.
4. Batra, P., Sharma, A. (2013) Anti-cancer potential of flavonoids: recent trends and future perspectives. 3 Biotech. 3, 439-459. <https://doi.org/10.1007/s13205-013-0117-5>
5. Bel, S., Hooper, L. V. (2018) Secretory autophagy of lysozyme in Paneth cells. Autophagy 14, 719-721. <https://doi.org/10.1080/15548627.2018.1430462>
6. Bertolotti, A., Zhang, Y., Hendershot, L. M., Harding, H. P., Ron, D. (2000) Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat. Cell. Biol. 2, 326. <https://doi.org/10.1038/35014014>
7. Besio, R., Iula, G., Garibaldi, N., Cipolla, L., Sabbioneda, S., Biggiogera, M., Marini, J. C., Rossi, A., Forlino, A. (2018) 4-PBA ameliorates cellular homeostasis in fibroblasts from osteogenesis imperfecta patients by enhancing autophagy and stimulating protein secretion. Biochim. Biophys. Acta Mol. Basis Dis. 1864, 1642-1652. <https://doi.org/10.1016/j.bbadis.2018.02.002>
8. Brown, J. M., Giaccia, A. J. (1998) The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res. 58, 1408-1416.
9. Carew, J. S., Nawrocki, S. T., Cleveland, J. L. (2007) Modulating autophagy for therapeutic benefit. Autophagy 3, 464-467. <https://doi.org/10.4161/auto.4311>
10. Chen, A. Y., Chen, Y. C. (2013) A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chem. 138, 2099-2107. <https://doi.org/10.1016/j.foodchem.2012.11.139>
11. Cheng, X., Feng, H., Wu, H., Jin, Z., Shen, X., Kuang, J., Huo, Z., Chen, X., Gao, H., Ye, F. (2018) Targeting autophagy enhances apatinib-induced apoptosis via endoplasmic reticulum stress for human colorectal cancer. Cancer Lett. 431, 105-114. <https://doi.org/10.1016/j.canlet.2018.05.046>
12. Dupont, N., Codogno, P. (2016) Autophagy transduces physical constraints into biological responses. Int. J. Biochem. Cell Biol. 79, 419-426. <https://doi.org/10.1016/j.biocel.2016.08.021>
13. Engelman, J. A. (2009) Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat. Rev. Cancer 9, 550. <https://doi.org/10.1038/nrc2664>
14. Fraser, M., Bai, T., Tsang, B. K. (2008) Akt promotes cisplatin resistance in human ovarian cancer cells through inhibition of p53 phosphorylation and nuclear function. Int. J. Cancer 122, 534-546. <https://doi.org/10.1002/ijc.23086>
15. Gasparri, M. L., Bardhi, E., Ruscito, I., Papadia, A., Farooqi, A. A., Marchetti, C., Bogani, G., Ceccacci, I., Mueller, M. D., Panici, P. B. (2017) PI3K/AKT/mTOR pathway in ovarian cancer treatment: are we on the right track? Geburtshilfe Frauenheilkd 77, 1095-1103.
16. Gates, M. A., Tworoger, S. S., Hecht, J. L., De Vivo, I., Rosner, B., Hankinson, S. E. (2007) A prospective study of dietary flavonoid intake and incidence of epithelial ovarian cancer. Int. J. Cancer 121, 2225-2232. <https://doi.org/10.1002/ijc.22790>
17. Geretto, M., Pulliero, A., Rosano, C., Zhabayeva, D., Bersimbaev, R., Izzotti, A. (2017) Resistance to cancer chemotherapeutic drugs is determined by pivotal microRNA regulators. Am. J. Cancer Res. 7, 1350.
18. Gottlieb, T. M., Leal, J. F. M., Seger, R., Taya, Y., Oren, M. (2002) Cross-talk between Akt, p53 and Mdm2: possible implications for the regulation of apoptosis. Oncogene 21, 1299. <https://doi.org/10.1038/sj.onc.1205181>
19. Guo, H., Lin, W., Zhang, X., Zhang, X., Hu, Z., Li, L., Duan, Z., Zhang, J., Ren, F. (2017) Kaempferol induces hepatocellular carcinoma cell death via endoplasmic reticulum stress-CHOP-autophagy signaling pathway. Oncotarget 8, 82207. <https://doi.org/10.18632/oncotarget.19200>
20. Herman-Antosiewicz, A., Johnson, D. E., Singh, S. V. (2006) Sulforaphane causes autophagy to inhibit release of cytochrome C and apoptosis in human prostate cancer cells. Cancer Res. 66, 5828-5835. <https://doi.org/10.1158/0008-5472.CAN-06-0139>
21. Hetz, C. (2012) The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat. Rev. Mol. Cell Biol. 13, 89-102. <https://doi.org/10.1038/nrm3270>
22. Huang, K., Chen, Y., Zhang, R., Wu, Y., Ma, Y., Fang, X., Shen, S. (2018) Honokiol induces apoptosis and autophagy via the ROS/ERK1/2 signaling pathway in human osteosarcoma cells in vitro and in vivo. Death Cell Dis. 9, 157. <https://doi.org/10.1038/s41419-017-0166-5>
23. Janku, F., Yap, T. A., Meric-Bernstam, F. (2018) Targeting the PI3K pathway in cancer: are we making headway? Nat. Rev. Clin. Oncol. 15, 273. <https://doi.org/10.1038/nrclinonc.2018.28>
24. Jayson, G. C., Kohn, E. C., Kitchener, H. C., Ledermann, J. A. (2014) Ovarian cancer. Lancet 384, 1376-1388. <https://doi.org/10.1016/S0140-6736(13)62146-7>
25. Kim, I., Xu, W., Reed, J. C. (2008) Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat. Rev. Drug. Discov. 7, 1013. <https://doi.org/10.1038/nrd2755>
26. Kim, S.-H., Choi, K.-C. (2013) Anti-cancer effect and underlying mechanism(s) of kaempferol, a phytoestrogen, on the regulation of apoptosis in diverse cancer cell models. Toxicol. Res. 29, 229. <https://doi.org/10.5487/TR.2013.29.4.229>
27. Kolasa, I. K., Rembiszewska, A., Felisiak, A., Ziolkowska- Seta, I., Murawska, M., Moes, J., Timorek, A., Dansonka- Mieszkowska, A., Kupryjanczyk, J. (2009) PIK3CA amplification associates with resistance to chemotherapy in ovarian cancer patients. Cancer Biol. Ther. 8, 21-26. <https://doi.org/10.4161/cbt.8.1.7209>
28. Kouroku, Y., Fujita, E., Tanida, I., Ueno, T., Isoai, A., Kumagai, H., Ogawa, S., Kaufman, R., Kominami, E., Momoi, T. (2007) ER stress (PERK/eIF2α phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Differ. 14, 230. <https://doi.org/10.1038/sj.cdd.4401984>
29. Levine, B., Sinha, S. C., Kroemer, G. (2008) Bcl-2 family members: dual regulators of apoptosis and autophagy. Autophagy 4, 600-606. <https://doi.org/10.4161/auto.6260>
30. Luo, H., Rankin, G. O., Li, Z., DePriest, L., Chen, Y. C. (2011) Kaempferol induces apoptosis in ovarian cancer cells through activating p53 in the intrinsic pathway. Food Chem. 128, 513-519. <https://doi.org/10.1016/j.foodchem.2011.03.073>
31. Mabuchi, S., Kuroda, H., Takahashi, R., Sasano, T. (2015) The PI3K/AKT/mTOR pathway as a therapeutic target in ovarian cancer. Gynecol. Oncol. 137, 173-179. <https://doi.org/10.1016/j.ygyno.2015.02.003>
32. Maiuri, M. C., Zalckvar, E., Kimchi, A., Kroemer, G. (2007) Self-eating and self-killing: crosstalk between autophagy and apoptosis. Rev. Mol. Cell Biol. 8, 741. <https://doi.org/10.1038/nrm2239>
33. Martinon, F. (2012) Targeting endoplasmic reticulum signaling pathways in cancer. Acta Oncol. 51, 822-830. <https://doi.org/10.3109/0284186X.2012.689113>
34. Mizushima, N., Komatsu, M. (2011) Autophagy: renovation of cells and tissues. Cell 147, 728-741. <https://doi.org/10.1016/j.cell.2011.10.026>
35. Moenner, M., Pluquet, O., Bouchecareilh, M., Chevet, E. (2007) Integrated endoplasmic reticulum stress responses in cancer. Cancer Res. 67, 10631-10634. <https://doi.org/10.1158/0008-5472.CAN-07-1705>
36. Network, C. G. A. R. (2011) Integrated genomic analyses of ovarian carcinoma. Nature 474, 609.
37. Nikolopoulos, D., Theocharis, S., Kouraklis, G. (2010) Ghrelin: a potential therapeutic target for cancer. Regul. Pept. 163, 7-17. <https://doi.org/10.1016/j.regpep.2010.03.011>
38. Ogawara, Y., Kishishita, S., Obata, T., Isazawa, Y., Suzuki, T., Tanaka, K., Masuyama, N., Gotoh, Y. (2002) Akt enhances Mdm2-mediated ubiquitination and degradation of p53. J. Biol. Chem. 277, 21843-21850. <https://doi.org/10.1074/jbc.M109745200>
39. Ricciardelli, C., Oehler, M. K. (2009) Diverse molecular pathways in ovarian cancer and their clinical significance. Maturitas 62, 270-275. <https://doi.org/10.1016/j.maturitas.2009.01.001>
40. Siegel, R., Ward, E., Brawley, O., Jemal, A. (2011) Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J. Clin. 61, 212-236. <https://doi.org/10.3322/caac.20121>
41. Siegel, R. L., Miller, K. D., Jemal, A. (2017) Cancer statistics, 2017. CA Cancer J. Clin. 67, 7-30. <https://doi.org/10.3322/caac.21387>
42. Song, K., Cowan, K. H., Sinha, B. K. (1999) In vivo studies of adenovirus-mediated p53 gene therapy for cis-platinumresistant human ovarian tumor xenografts. Oncol. Res. 11, 153-159.
43. Wang, W.-A., Groenendyk, J., Michalak, M. (2014) Endoplasmic reticulum stress associated responses in cancer. Biochim. Biophys. Acta 1843, 2143-2149. <https://doi.org/10.1016/j.bbamcr.2014.01.012>
44. Xiao, Z.-P., Peng, Z.-Y., Peng, M.-J., Yan, W.-B., Ouyang, Y.- Z., Zhu, H.-L. (2011) Flavonoids health benefits and their molecular mechanism. Mini. Rev. Med. Chem. 11, 169-177. <https://doi.org/10.2174/138955711794519546>
45. Xu, L., Liu, J.-H., Zhang, J., Zhang, N., Wang, Z.-H. (2015) Blockade of autophagy aggravates endoplasmic reticulum stress and improves Paclitaxel cytotoxicity in human cervical cancer cells. Cancer Res. Treat. 47, 313. <https://doi.org/10.4143/crt.2013.222>
46. Yadav, R. K., Chae, S.-W., Kim, H.-R., Chae, H. J. (2014) Endoplasmic reticulum stress and cancer. J. Cancer Prevent. 19, 75. <https://doi.org/10.15430/JCP.2014.19.2.75>
47. Zhang, J. F., Zhang, Y. L., Wu, Y. C. (2018) The Role of sirt1 in ischemic stroke: pathogenesis and therapeutic strategies. Front. Neurosci. 12, 833. <https://doi.org/10.3389/fnins.2018.00833>
48. Zhao, Y., Tian, B., Wang, Y., Ding, H. (2017) Kaempferol sensitizes human ovarian cancer cells – OVCAR-3 and SKOV-3 to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis via JNK/ERK-CHOP pathway and up-regulation of death receptors 4 and 5. Med. Sci. Monit. 23, 5096. <https://doi.org/10.12659/MSM.903552>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Submissions

Archive