Fol. Biol. 2020, 66, 60-66
https://doi.org/10.14712/fb2020066020060
Both Caspase and Calpain are Involved in Endoplasmic Reticulum-Targeted BNIP3-Induced Cell Death
References
1. , M. B., Yongqiang, C., Henson, E. S., Jeannick, C., Eileen, M. M. W., Israels, S. J.,Gibson, S. B. (2008) Hypoxia induces autophagic cell death in apoptosis-competent cells through a mechanism involving BNIP3. Autophagy 4, 195-204.
<https://doi.org/10.4161/auto.5278>
2. , J.,Wu Y., Zhang, L., Fang X., Hu X. (2018) Evidence for calpains in cancer metastasis. J. Cell. Physiol. 234, 8233-8240.
<https://doi.org/10.1002/jcp.27649>
3. , R., Arnaudeau, S., Borner, C., Kelley, W. L., Tschopp, J., Lew, D. P., Demaurex, N., Krause, K. H. (2000) Bcl-2 decreases the free Ca2+ concentration within the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 97, 5723-5728.
<https://doi.org/10.1073/pnas.97.11.5723>
4. , R. M., Thompson, J. W., Webster, K. A. (2015) BNIP3 promotes calcium and calpain-dependent cell death. Life Sci. 142, 26-35.
<https://doi.org/10.1016/j.lfs.2015.10.010>
5. , A., Brady, N. R., Logue, S. E., Sayen, M. R., Jinno, M., Kirshenbaum, L. A., Gottlieb, R. A., Gustafsson, B. (2007) Response to myocardial ischemia/reperfusion injury involves Bnip3 and autophagy. Cell Death Differ. 14, 146-157.
<https://doi.org/10.1038/sj.cdd.4401936>
6. , R. A., Quinsay, M. N., Orogo, A. M., Kayla, G., Shivaji, R., Sa B, G. (2012) Microtubule-associated protein 1 light chain 3 (LC3) interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy. J. Biol. Chem. 287, 190-194.
7. , T., Luedtke, D., Edwards, H., Taub, J. W., Ge, Y. (2019) A delicate balance - the BCL-2 family and its role in apoptosis, oncogenesis, and cancer therapeutics. Biochem. Pharmacol. 162, 250-261.
<https://doi.org/10.1016/j.bcp.2019.01.015>
8. , L. A., Hernandez, O. M., Bishopric, N. H., Webster, K. A. (2002) Hypoxia and acidosis activate cardiac myocyte death through the Bcl-2 family protein BNIP3. Proc. Natl. Acad. Sci. USA 99, 12825-12830.
<https://doi.org/10.1073/pnas.202474099>
9. , D. R., Thorsten, B., Mak, T. W. (2013) Caspase functions in cell death and disease. Cold Spring Harb. Perspect. Biol. 5, a008656.
<https://doi.org/10.1101/cshperspect.a008656>
10. , T., Zhu, H., Morishima, N., Li, E., Xu, J., Yankner, B. A., Yuan, J. (2000a) Caspase-12 mediates endoplasmicreticulum- specific apoptosis and cytotoxicity by amyloid-β. Nature 403, 98-103.
<https://doi.org/10.1038/47513>
11. , T., Yuan J. Y. (2000b) Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J. Cell Biol. 150, 887-894.
<https://doi.org/10.1083/jcb.150.4.887>
12. , L. K., Abujiang, P., Jessica, P., Bingliang, F., Jack, R., Mcconkey, D. J., Swisher, S. G. (2002) Bax and Bak promote apoptosis by modulating endoplasmic reticular and mitochondrial Ca2+ stores. J. Biol. Chem. 277, 9219-9225.
<https://doi.org/10.1074/jbc.M106817200>
13. , J. T., Kothari, A. (2017) Anti-apoptotic BCL-2 family members in development. Cell Death Differ. 25, 37-45.
<https://doi.org/10.1038/cdd.2017.170>
14. , P., Carreras-Sureda, A., Hetz, C. (2017) BCL-2 family: integrating stress responses at the ER to control cell demise. Cell Death Differ. 24, 1478-1487.
<https://doi.org/10.1038/cdd.2017.82>
15. , R., Chen, G., Velde, C. V., Cizeau, J., Park, J. H., Reed, J. C., Gietz, R. D., Greenberg, A. H. (2000) BNIP3 heterodimerizes with Bcl-2/Bcl-XL and induces cell death independent of a Bcl-2 homology 3 (BH3) domain at both mitochondrial and nonmitochondrial sites. J. Biol. Chem. 275, 1439-1448.
<https://doi.org/10.1074/jbc.275.2.1439>
16. , K. M., Karen, E., Kirshenbaum, L. A. (2002) Inducible expression of BNIP3 provokes mitochondrial defects and hypoxia-mediated cell death of ventricular myocytes. Circ. Res. 91, 226-231.
<https://doi.org/10.1161/01.RES.0000029232.42227.16>
17. , D., Rojas-Rivera, D., Hetz, C. (2010) Integrating stress signals at the endoplasmic reticulum: the BCL-2 protein family rheostat. Biochim. Biophys. Acta 1813, 564-574.
<https://doi.org/10.1016/j.bbamcr.2010.11.012>
18. , L., Oakes, S. A., Opferman, J. T., Cheng, E. H., Sorcinelli, M. D., Pozzan, T., Korsmeyer, S. J. (2003) BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science 300, 135-139.
<https://doi.org/10.1126/science.1081208>
19. , R., Letai, A., Sarosiek, K. (2019) Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat. Rev. Mol. Cell Biol. 20, 175–93.
<https://doi.org/10.1038/s41580-018-0089-8>
20. , S. J., Carragher, N. O., Frame, M. C., Parr, T., Martin, S. G. (2011) The calpain system and cancer. Nature Reviews Cancer 11, 364–374.
<https://doi.org/10.1038/nrc3050>
21. , C., Vande, Cizeau, J., Dubik, D., Alimonti, J., Brown, T., Israels, S., Hakem, R., Greenberg, A. H. (2000) BNIP3 and genetic control of necrosis-like cell death through the mitochondrial permeability transition pore. Mol. Cell. Biol. 20, 5454-5468.
<https://doi.org/10.1128/MCB.20.15.5454-5468.2000>
22. , B., Liu, Q., Bi, Y. (2019) Autophagy and apoptosis are regulated by stress on Bcl2 by AMBRA1 in the endoplasmic reticulum and mitochondria. Theor. Biol. Med. Model. 16, 18-27.
<https://doi.org/10.1186/s12976-019-0113-5>
23. , L., Li, L., Liu H., Borowitz, J. L., Isom, G. E. (2009) BNIP3 mediates cell death by different pathways following localization to endoplasmic reticulum and mitochondrion. FASEB J. 23, 3405-3414.
<https://doi.org/10.1096/fj.08-124354>
